Javascript must be enabled to continue!
Mapping glacial sediment plumes in the Antarctic Peninsula using deep learning
View through CrossRef
The subglacial discharge of sediment-rich meltwater plumes can be detected in satellite imagery where plumes reach the ocean surface at the terminus of tidewater glaciers. These meltwater plumes can influence glacier melting and ocean properties in important ways. Studying them provides insights into meltwater pathways in glacial hydrological systems.Sediment-rich meltwater plumes are observed extensively in Greenland, Svalbard and other regions, however in Antarctica observations have been more limited. Recent detections of seasonal speed variations on tidewater glaciers of the Antarctic Peninsula suggest that surface meltwater reaching the glacier bed may be an important factor influencing ice dynamic behaviour on the Antarctic Peninsula Ice Sheet (APIS), however surface-bed hydrological connections have not been directly observed through fieldwork on the mainland APIS. Therefore, studying the presence and distribution of sediment plumes around the Peninsula can provide insights to understand the factors influencing newly observed seasonal ice speed fluctuations.Here we develop a remote-sensing approach to map the locations and frequency of sediment plumes on the Antarctic Peninsula coastline using high-resolution multi-spectral imaging from Sentinel-2 satellites and a U-Net based convolutional neural network. This methodology allows us to detect small sediment plumes in images with high cloud and sea-ice densities. We apply our approach to the Antarctic Peninsula north of 65°S, including the South Shetland Islands, to produce a time-series of sediment plumes from 2016 to 2023 covering 150,000 km2.We use these results combined with outputs from regional climate models and reanalysis to assess the link between surface-visible sediment plumes and surface melt and runoff from the Antarctic Peninsula’s glaciers. We find that the timings and locations of sediment plumes correspond to modelled runoff, providing evidence for widespread surface-bed hydrological connections in the Antarctic Peninsula.
Title: Mapping glacial sediment plumes in the Antarctic Peninsula using deep learning
Description:
The subglacial discharge of sediment-rich meltwater plumes can be detected in satellite imagery where plumes reach the ocean surface at the terminus of tidewater glaciers.
These meltwater plumes can influence glacier melting and ocean properties in important ways.
Studying them provides insights into meltwater pathways in glacial hydrological systems.
Sediment-rich meltwater plumes are observed extensively in Greenland, Svalbard and other regions, however in Antarctica observations have been more limited.
Recent detections of seasonal speed variations on tidewater glaciers of the Antarctic Peninsula suggest that surface meltwater reaching the glacier bed may be an important factor influencing ice dynamic behaviour on the Antarctic Peninsula Ice Sheet (APIS), however surface-bed hydrological connections have not been directly observed through fieldwork on the mainland APIS.
Therefore, studying the presence and distribution of sediment plumes around the Peninsula can provide insights to understand the factors influencing newly observed seasonal ice speed fluctuations.
Here we develop a remote-sensing approach to map the locations and frequency of sediment plumes on the Antarctic Peninsula coastline using high-resolution multi-spectral imaging from Sentinel-2 satellites and a U-Net based convolutional neural network.
This methodology allows us to detect small sediment plumes in images with high cloud and sea-ice densities.
We apply our approach to the Antarctic Peninsula north of 65°S, including the South Shetland Islands, to produce a time-series of sediment plumes from 2016 to 2023 covering 150,000 km2.
We use these results combined with outputs from regional climate models and reanalysis to assess the link between surface-visible sediment plumes and surface melt and runoff from the Antarctic Peninsula’s glaciers.
We find that the timings and locations of sediment plumes correspond to modelled runoff, providing evidence for widespread surface-bed hydrological connections in the Antarctic Peninsula.
Related Results
Diffused and localized sediment production processes in a distributed transport model
Diffused and localized sediment production processes in a distributed transport model
<p>The identification of preferential sediment production areas within a river basin is essential to improve predictions of sediment load and its sources, and to iden...
Glacialāinterglacial history of Antarctic Intermediate Water: Relative strengths of Antarctic versus Indian Ocean sources
Glacialāinterglacial history of Antarctic Intermediate Water: Relative strengths of Antarctic versus Indian Ocean sources
Sediment cores from the southern continental margin of Australia are near the formation region of Antarctic Intermediate Water (AAIW) and Subantarctic Mode Water and record the cha...
Distribution patterns and abundance of Antarctic pristine benthic communities
Distribution patterns and abundance of Antarctic pristine benthic communities
Knowledge of the abundance, distribution patterns, and population ecology of antarctic benthic biodiversity have increased considerably during the last decades. Antarctic marine be...
Impact of glacial isostatic adjustment on the long-term stability of the Antarctic ice sheet
Impact of glacial isostatic adjustment on the long-term stability of the Antarctic ice sheet
<p>Projections of the contribution of the Antarctic ice sheet to future sea-level rise remain highly uncertain, especially on long timescales. One of the reasons for ...
The critical state behavior of saturated glacial till
The critical state behavior of saturated glacial till
A large number of glacial tills are distributed in the high and cold mountainous areas of the Qinghai-Tibet Plateau. Recently, climate change compounded by many other factors, prom...
Automated mapping of Antarctic supraglacial lakes and streams using machine learning
Automated mapping of Antarctic supraglacial lakes and streams using machine learning
<p>Antarctica stores ~91 % of the global ice mass making it the biggest potential contributor to global sea-level-rise. With increased surface air temperatures during...
A revised look at Canada's landscape: glacial processes and dynamics
A revised look at Canada's landscape: glacial processes and dynamics
Our understanding of the Laurentide Ice Sheet has been significantly improved by recent developments in theoretical models of ice sheets and ice dynamics, understanding of mechanis...
A revised look at Canada's landscape: glacial processes and dynamics
A revised look at Canada's landscape: glacial processes and dynamics
Our understanding of the Laurentide Ice Sheet has been significantly improved by recent developments in theoretical models of ice sheets and ice dynamics, understanding of mechanis...

