Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Glypican4 promotes cardiac specification and differentiation by attenuating canonical Wnt and Bmp signaling

View through CrossRef
Glypicans are heparan sulphate proteoglycans (HSPGs) attached to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor, and interact with various extracellular growth factors and receptors. The Drosophila division abnormal delayed (dally) was the first glypican loss-of-function mutant described that displays disrupted cell divisions in the eye and morphological defects in the wing. In human, as in most vertebrates, six glypican-encoding genes have been identified (GPC1-6), and mutations in several glypican genes cause multiple malformations including congenital heart defects. To understand better the role of glypicans during heart development, we studied the zebrafish knypek mutant, which is deficient for Gpc4. Our results demonstrate that knypek/gpc4 mutant embryos display severe cardiac defects, most apparent by a strong reduction in cardiomyocyte numbers. Cell-tracing experiments, using photoconvertable fluorescent proteins and genetic labeling, demonstrate that Gpc4 ‘Knypek’ is required for specification of cardiac progenitor cells and their differentiation into cardiomyocytes. Mechanistically, we show that Bmp signaling is enhanced in the anterior lateral plate mesoderm of knypek/gpc4 mutants and that genetic inhibition of Bmp signaling rescues the cardiomyocyte differentiation defect observed in knypek/gpc4 embryos. In addition, canonical Wnt signaling is upregulated in knypek/gpc4 embryos, and inhibiting canonical Wnt signaling in knypek/gpc4 embryos by overexpression of the Wnt inhibitor Dkk1 restores normal cardiomyocyte numbers. Therefore, we conclude that Gpc4 is required to attenuate both canonical Wnt and Bmp signaling in the anterior lateral plate mesoderm to allow cardiac progenitor cells to specify and differentiate into cardiomyocytes. This provides a possible explanation for how congenital heart defects arise in glypican-deficient patients.
Title: Glypican4 promotes cardiac specification and differentiation by attenuating canonical Wnt and Bmp signaling
Description:
Glypicans are heparan sulphate proteoglycans (HSPGs) attached to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor, and interact with various extracellular growth factors and receptors.
The Drosophila division abnormal delayed (dally) was the first glypican loss-of-function mutant described that displays disrupted cell divisions in the eye and morphological defects in the wing.
In human, as in most vertebrates, six glypican-encoding genes have been identified (GPC1-6), and mutations in several glypican genes cause multiple malformations including congenital heart defects.
To understand better the role of glypicans during heart development, we studied the zebrafish knypek mutant, which is deficient for Gpc4.
Our results demonstrate that knypek/gpc4 mutant embryos display severe cardiac defects, most apparent by a strong reduction in cardiomyocyte numbers.
Cell-tracing experiments, using photoconvertable fluorescent proteins and genetic labeling, demonstrate that Gpc4 ‘Knypek’ is required for specification of cardiac progenitor cells and their differentiation into cardiomyocytes.
Mechanistically, we show that Bmp signaling is enhanced in the anterior lateral plate mesoderm of knypek/gpc4 mutants and that genetic inhibition of Bmp signaling rescues the cardiomyocyte differentiation defect observed in knypek/gpc4 embryos.
In addition, canonical Wnt signaling is upregulated in knypek/gpc4 embryos, and inhibiting canonical Wnt signaling in knypek/gpc4 embryos by overexpression of the Wnt inhibitor Dkk1 restores normal cardiomyocyte numbers.
Therefore, we conclude that Gpc4 is required to attenuate both canonical Wnt and Bmp signaling in the anterior lateral plate mesoderm to allow cardiac progenitor cells to specify and differentiate into cardiomyocytes.
This provides a possible explanation for how congenital heart defects arise in glypican-deficient patients.

Related Results

WNT Signaling Pathway and Stem Cell Signaling Network
WNT Signaling Pathway and Stem Cell Signaling Network
Abstract WNT signals are transduced to the canonical pathway for cell fate determination, and to the noncanonical pathway for control of cell movement and tissue pol...
BMP Signaling Downstream of the Highwire E3 Ligase Sensitizes Nociceptors
BMP Signaling Downstream of the Highwire E3 Ligase Sensitizes Nociceptors
AbstractA comprehensive understanding of the molecular machinery important for nociception is essential to improving the treatment of pain. Here, we show that the BMP signaling pat...
WNT Receptor Requirements for Dishevelled Phosphorylation
WNT Receptor Requirements for Dishevelled Phosphorylation
The Dishevelled (DVL) protein is a key component of WNT signaling that relays signals from receptors to downstream effectors. It has been shown that following WNT ligand binding to...
Abstract 437: Bmper Regualtes Bmp Signaling Through Endocytosis
Abstract 437: Bmper Regualtes Bmp Signaling Through Endocytosis
Signaling through Bone Morphogenic Proteins (Bmp) governs the patterning of many tissues including the cardiovascular system. Nevertheless, simple models of Bmp regulation are insu...
Abstract 1584: Wnt/beta-catenin and Foxa2 axis activates AR signaling in castration resistant prostate cancer
Abstract 1584: Wnt/beta-catenin and Foxa2 axis activates AR signaling in castration resistant prostate cancer
Abstract Background: Prostate cancer (PCa) is the leading cancer among men in the world. Androgen deprivation therapy is a common treatment to cease prostate growth....
RPE specification in the chick is mediated by surface ectoderm-derived BMP and Wnt signalling
RPE specification in the chick is mediated by surface ectoderm-derived BMP and Wnt signalling
The retinal pigment epithelium (RPE) is indispensable for vertebrate eye development and vision. In the classical model of optic vesicle patterning, the surface ectoderm produces f...
Bone Morphogenetic Protein-2–Induced Transformation Involves the Activation of Mammalian Target of Rapamycin
Bone Morphogenetic Protein-2–Induced Transformation Involves the Activation of Mammalian Target of Rapamycin
AbstractBone morphogenetic protein-2 (BMP-2) is an evolutionary conserved protein that is essential for embryonic development. BMP-2 is highly expressed in ∼98% of human lung carci...
Oligodendrocytes Development and Wnt Signaling Pathway
Oligodendrocytes Development and Wnt Signaling Pathway
Oligodendrocytes are specialized glial cell in central nervous system (CNS) responsible for the formation of myelin sheath around the axon. Oligodendrocyte proliferation and differ...

Back to Top