Javascript must be enabled to continue!
Explicit Runge–Kutta Numerical Manifold Method for Solving the Burgers’ Equation via the Hopf–Cole Transformation
View through CrossRef
This paper presents an efficient numerical manifold method for solving the Burgers’ equation. To improve accuracy and streamline the solution process, we apply a nonlinear function transformation technique that reformulates the original problem into a linear diffusion equation. We utilize a dual cover mesh along with an explicit multi-step time integration method for spatial and temporal discretization, respectively. Constant cover functions are employed across mathematical covers, interconnected by a linear weight function for each manifold element. The full discretization formulation is derived using the Galerkin weak form. To efficiently compute the inverse of the symmetric positive definite mass matrix, we employ the Crout algorithm. The performance and convergence of our method are rigorously evaluated through several benchmark numerical tests. Extensive comparisons with exact solutions and alternative methods demonstrate that our approach delivers an accurate, stable, and efficient computational scheme for the Burgers’ equation.
Title: Explicit Runge–Kutta Numerical Manifold Method for Solving the Burgers’ Equation via the Hopf–Cole Transformation
Description:
This paper presents an efficient numerical manifold method for solving the Burgers’ equation.
To improve accuracy and streamline the solution process, we apply a nonlinear function transformation technique that reformulates the original problem into a linear diffusion equation.
We utilize a dual cover mesh along with an explicit multi-step time integration method for spatial and temporal discretization, respectively.
Constant cover functions are employed across mathematical covers, interconnected by a linear weight function for each manifold element.
The full discretization formulation is derived using the Galerkin weak form.
To efficiently compute the inverse of the symmetric positive definite mass matrix, we employ the Crout algorithm.
The performance and convergence of our method are rigorously evaluated through several benchmark numerical tests.
Extensive comparisons with exact solutions and alternative methods demonstrate that our approach delivers an accurate, stable, and efficient computational scheme for the Burgers’ equation.
Related Results
Μέθοδοι Runge-Kutta και Runge-Kutta-Nystrom με ειδικές ιδιότητες για την επίλυση διαφορικών εξισώσεων
Μέθοδοι Runge-Kutta και Runge-Kutta-Nystrom με ειδικές ιδιότητες για την επίλυση διαφορικών εξισώσεων
Στην παρούσα διδακτορική διατριβή μελετάται η αριθμητική επίλυση συστημάτων πρωτοβάθμιων και δευτεροβάθμιων συνήθων διαφορικών εξισώσεων με λύση ταλαντωτικής μορφής. Για την αριθμη...
Symplectic Partitioned Runge-Kutta and Symplectic Runge-Kutta Methods Generated by 2-Stage RadauIA Method
Symplectic Partitioned Runge-Kutta and Symplectic Runge-Kutta Methods Generated by 2-Stage RadauIA Method
To preserve the symplecticity property, it is natural to require numerical integration of Hamiltonian systems to be symplectic. As a famous numerical integration, it is known that ...
Solution of First Order Ordinary Differential Equations Using Fourth Order Runge-Kutta Method with MATLAB.
Solution of First Order Ordinary Differential Equations Using Fourth Order Runge-Kutta Method with MATLAB.
Differential Equations are used in developing models in the physical sciences, engineering, mathematics, social science, environmental sciences, medical sciences and other numerous...
Explicit Numerical Manifold Characteristic Galerkin Method for Solving Burgers’ Equation
Explicit Numerical Manifold Characteristic Galerkin Method for Solving Burgers’ Equation
This paper presents a nonstandard numerical manifold method (NMM) for solving Burgers’ equation. Employing the characteristic Galerkin method, we initially apply the Crank–Nicolson...
Nullspaces yield new explicit Runge--Kutta pairs
Nullspaces yield new explicit Runge--Kutta pairs
Abstract
Sixty years ago Butcher [1] characterized a natural tabulation of the or-
der conditions for Runge{Kutta methods as an isomorphism from the set
of rooted trees hav...
Lilie, Licht und Gottes Weisheit: Philipp Otto Runge und Jacob Böhme
Lilie, Licht und Gottes Weisheit: Philipp Otto Runge und Jacob Böhme
AbstractThe influence of Jacob Böhme on early Romantic art and its philosophy has been largely neglected by modern scholars, even though tracing the impact of Böhme's writing opens...
Analisis Kebutuhan Modul Matematika untuk Meningkatkan Kemampuan Pemecahan Masalah Siswa SMP N 4 Batang
Analisis Kebutuhan Modul Matematika untuk Meningkatkan Kemampuan Pemecahan Masalah Siswa SMP N 4 Batang
Pemecahan masalah merupakan suatu usaha untuk menyelesaikan masalah matematika menggunakan pemahaman yang telah dimilikinya. Siswa yang mempunyai kemampuan pemecahan masalah rendah...
Fish Burgers Fortified with Microencapsulated Sacha Inchi Oil: Effects on Technological and Sensory Properties
Fish Burgers Fortified with Microencapsulated Sacha Inchi Oil: Effects on Technological and Sensory Properties
The long-chain omega-3 fatty acids alpha linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have proven health benefits, but it is not common to find...

