Javascript must be enabled to continue!
Fusion of Wavelet Decomposition and N-BEATS for improved Stock Market Forecasting
View through CrossRef
Abstract
Stock market forecasting is one of the most exciting areas of time series forecasting both for the industry and academia. Stock market is a complex, non-linear and non-stationary system with many governing factors and noise. Some of these factors can be quantified and modeled, whereas some factors possess a random walk behavior making the process of forecasting challenging. Various statistical methods, machine learning, and deep learning techniques are prevalent in stock market forecasting. Recently, there has been a paradigm shift towards hybrid models, showing some promising results. In this paper, we propose a technique that combines a recently proposed deep learning architecture N-BEATS with wavelet transformation for improved forecasting of future prices of stock market indices. This work uses daily time series data from five stock market indices, namely NIFTY 50, Dow Jones Industrial Average (DJIA), Nikkei 225, BSE SENSEX, and Hang Seng Index (HSI), for the experimental studies to compare the proposed technique with some traditional deep learning techniques. The empirical findings suggest that the proposed architecture has high accuracy as compared to some traditional time series forecasting methods and can improve the forecasting of non-linear and non-stationary stock market time series.2010 MSC: 00-01, 99-00
Title: Fusion of Wavelet Decomposition and N-BEATS for improved Stock Market Forecasting
Description:
Abstract
Stock market forecasting is one of the most exciting areas of time series forecasting both for the industry and academia.
Stock market is a complex, non-linear and non-stationary system with many governing factors and noise.
Some of these factors can be quantified and modeled, whereas some factors possess a random walk behavior making the process of forecasting challenging.
Various statistical methods, machine learning, and deep learning techniques are prevalent in stock market forecasting.
Recently, there has been a paradigm shift towards hybrid models, showing some promising results.
In this paper, we propose a technique that combines a recently proposed deep learning architecture N-BEATS with wavelet transformation for improved forecasting of future prices of stock market indices.
This work uses daily time series data from five stock market indices, namely NIFTY 50, Dow Jones Industrial Average (DJIA), Nikkei 225, BSE SENSEX, and Hang Seng Index (HSI), for the experimental studies to compare the proposed technique with some traditional deep learning techniques.
The empirical findings suggest that the proposed architecture has high accuracy as compared to some traditional time series forecasting methods and can improve the forecasting of non-linear and non-stationary stock market time series.
2010 MSC: 00-01, 99-00.
Related Results
The Nuclear Fusion Award
The Nuclear Fusion Award
The Nuclear Fusion Award ceremony for 2009 and 2010 award winners was held during the 23rd IAEA Fusion Energy Conference in Daejeon. This time, both 2009 and 2010 award winners w...
Performance Comparison of Hartley Transform with Hartley Wavelet and Hybrid Hartley Wavelet Transforms for Image Data Compression
Performance Comparison of Hartley Transform with Hartley Wavelet and Hybrid Hartley Wavelet Transforms for Image Data Compression
This paper proposes image compression using Hybrid Hartley wavelet transform. The paper compares the results of Hybrid Hartley wavelet transform with that of orthogonal Hartley tra...
Aplikasi Wavelet Untuk Penghilangan Derau Isyarat Elektrokardiograf
Aplikasi Wavelet Untuk Penghilangan Derau Isyarat Elektrokardiograf
Abstract. Wavelet Application For Denoising Electrocardiograph Signal. Wavelet has the advantage of the ability to do multi resolution analysis in which one of its applications is ...
Establishment and Application of the Multi-Peak Forecasting Model
Establishment and Application of the Multi-Peak Forecasting Model
Abstract
After the development of the oil field, it is an important task to predict the production and the recoverable reserve opportunely by the production data....
Nonproliferation and fusion power plants
Nonproliferation and fusion power plants
Abstract
The world now appears to be on the brink of realizing commercial fusion. As fusion energy progresses towards near-term commercial deployment, the question arises a...
The Application of S‐transform Spectrum Decomposition Technique in Extraction of Weak Seismic Signals
The Application of S‐transform Spectrum Decomposition Technique in Extraction of Weak Seismic Signals
AbstractIn processing of deep seismic reflection data, when the frequency band difference between the weak useful signal and noise both from the deep subsurface is very small and h...
Forecasting
Forecasting
The history of forecasting goes back at least as far as the Oracle at Delphi in Greece. Stripped of its mystique, this was what we now refer to as “unaided judgment,” the only fore...
Wavelet Theory: Applications of the Wavelet
Wavelet Theory: Applications of the Wavelet
In this Chapter, continuous Haar wavelet functions base and spline base have been discussed. Haar wavelet approximations are used for solving of differential equations (DEs). The n...

