Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Reconstructing Snow-Free Sentinel-2 Satellite Imagery: A Generative Adversarial Network (GAN) Approach

View through CrossRef
Sentinel-2 satellites are one of the major instruments in remote sensing (RS) technology that has revolutionized Earth observation research, as its main goal is to offer high-resolution satellite data for dynamic monitoring of Earth’s surface and climate change detection amongst others. However, visual observation of Sentinel-2 satellite data has revealed that most images obtained during the winter season contain snow noise, posing a major challenge and impediment to satellite RS analysis of land surface. This singular effect hampers satellite signals from capturing important surface features within the geographical area of interest. Consequently, it leads to information loss, image processing problems due to contamination, and masking effects, all of which can reduce the accuracy of image analysis. In this study, we developed a snow-cover removal (SCR) model based on the Cycle-Consistent Adversarial Networks (CycleGANs) architecture. Data augmentation procedures were carried out to salvage the effect of the limited availability of Sentinel-2 image data. Sentinel-2 satellite images were used for model training and the development of a novel SCR model. The SCR model captures snow and other prominent features in the Sentinel-2 satellite image and then generates a new snow-free synthetic optical image that shares the same characteristics as the source satellite image. The snow-free synthetic images generated are evaluated to quantify their visual and semantic similarity with original snow-free Sentinel-2 satellite images by using different image qualitative metrics (IQMs) such as Structural Similarity Index Measure (SSIM), Universal image quality index (Q), and peak signal-to-noise ratio (PSNR). The estimated metric data shows that Q delivers more metric values, nearly 95%, than SSIM and PRSN. The methodology presented in this study could be beneficial for RS research in DL model development for environmental mapping and time series modeling. The results also confirm the DL technique’s applicability in RS studies.
Title: Reconstructing Snow-Free Sentinel-2 Satellite Imagery: A Generative Adversarial Network (GAN) Approach
Description:
Sentinel-2 satellites are one of the major instruments in remote sensing (RS) technology that has revolutionized Earth observation research, as its main goal is to offer high-resolution satellite data for dynamic monitoring of Earth’s surface and climate change detection amongst others.
However, visual observation of Sentinel-2 satellite data has revealed that most images obtained during the winter season contain snow noise, posing a major challenge and impediment to satellite RS analysis of land surface.
This singular effect hampers satellite signals from capturing important surface features within the geographical area of interest.
Consequently, it leads to information loss, image processing problems due to contamination, and masking effects, all of which can reduce the accuracy of image analysis.
In this study, we developed a snow-cover removal (SCR) model based on the Cycle-Consistent Adversarial Networks (CycleGANs) architecture.
Data augmentation procedures were carried out to salvage the effect of the limited availability of Sentinel-2 image data.
Sentinel-2 satellite images were used for model training and the development of a novel SCR model.
The SCR model captures snow and other prominent features in the Sentinel-2 satellite image and then generates a new snow-free synthetic optical image that shares the same characteristics as the source satellite image.
The snow-free synthetic images generated are evaluated to quantify their visual and semantic similarity with original snow-free Sentinel-2 satellite images by using different image qualitative metrics (IQMs) such as Structural Similarity Index Measure (SSIM), Universal image quality index (Q), and peak signal-to-noise ratio (PSNR).
The estimated metric data shows that Q delivers more metric values, nearly 95%, than SSIM and PRSN.
The methodology presented in this study could be beneficial for RS research in DL model development for environmental mapping and time series modeling.
The results also confirm the DL technique’s applicability in RS studies.

Related Results

Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates
Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates
Gallium nitride (GaN) has great potential applications in high-power and high-frequency electrical devices due to its superior physical properties.High dislocation density of GaN g...
Characteristics of Taiga and Tundra Snowpack in Development and Validation of Remote Sensing of Snow
Characteristics of Taiga and Tundra Snowpack in Development and Validation of Remote Sensing of Snow
Remote sensing of snow is a method to measure snow cover characteristics without direct physical contact with the target from airborne or space-borne platforms. Reliable estimates ...
Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors
Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors
Systematic studies were performed on the influence of different cap layers of i-GaN, n-GaN, p-GaN and InGaN on AlGaN/GaN high-electron-mobility transistors (HEMTs) grown on sapphi...
The additive value of multi-scale remote sensing snow products for alpine above-snow Cosmic Ray Neutron Sensing
The additive value of multi-scale remote sensing snow products for alpine above-snow Cosmic Ray Neutron Sensing
Alpine snow cover is shaped by complex topography, wind and insulation patterns, causing strong lateral heterogeneity in snow water equivalent (SWE) within only a few meters distan...
Dynamic Snow Distribution Modeling using the Fokker-Planck Equation Approach
Dynamic Snow Distribution Modeling using the Fokker-Planck Equation Approach
<p>The Fokker-Planck equation (FPE) describes the time evolution of the distribution function of fluctuating macroscopic variables.  Although the FPE was...
A snow reanalysis for Italy: IT-SNOW
A snow reanalysis for Italy: IT-SNOW
Quantifying the amount of snow deposited across the landscape at any given time is the main goal of snow hydrology. Yet, answering this apparently simple question is still elusive ...
Multi-Resolution Ocean Color roducts to support the Copernicus Marine High-Resolution Coastal Service 
Multi-Resolution Ocean Color roducts to support the Copernicus Marine High-Resolution Coastal Service 
High-quality satellite-based ocean colour products can provide valuable support and insights in the management and monitoring of coastal ecosystems. Today’s availability ...
IMAGERY IN JULIANNE MACLEAN’S THE COLOR OF HEAVEN
IMAGERY IN JULIANNE MACLEAN’S THE COLOR OF HEAVEN
Imagery is a mental picture imagined by a reader. This research discusses imagery that existed in Julianne MacLean's novel The Color of Heaven. The Color of Heaven is a novel that ...

Back to Top