Javascript must be enabled to continue!
Quantum solvability of a general ordered position dependent mass system: Mathews-Lakshmanan oscillator
View through CrossRef
In position dependent mass (PDM) problems, the quantum dynamics of the associated systems have been understood well in the literature for particular orderings. However, no efforts seem to have been made to solve such PDM problems for general orderings to obtain a global picture. In this connection, we here consider the general ordered quantum Hamiltonian of an interesting position dependent mass problem, namely, the Mathews-Lakshmanan oscillator, and try to solve the quantum problem for all possible orderings including Hermitian and non-Hermitian ones. The other interesting point in our study is that for all possible orderings, although the Schrödinger equation of this Mathews-Lakshmanan oscillator is uniquely reduced to the associated Legendre differential equation, their eigenfunctions cannot be represented in terms of the associated Legendre polynomials with integral degree and order. Rather the eigenfunctions are represented in terms of associated Legendre polynomials with non-integral degree and order. We here explore such polynomials and represent the discrete and continuum states of the system. We also exploit the connection between associated Legendre polynomials with non-integral degree with other orthogonal polynomials such as Jacobi and Gegenbauer polynomials.
Title: Quantum solvability of a general ordered position dependent mass system: Mathews-Lakshmanan oscillator
Description:
In position dependent mass (PDM) problems, the quantum dynamics of the associated systems have been understood well in the literature for particular orderings.
However, no efforts seem to have been made to solve such PDM problems for general orderings to obtain a global picture.
In this connection, we here consider the general ordered quantum Hamiltonian of an interesting position dependent mass problem, namely, the Mathews-Lakshmanan oscillator, and try to solve the quantum problem for all possible orderings including Hermitian and non-Hermitian ones.
The other interesting point in our study is that for all possible orderings, although the Schrödinger equation of this Mathews-Lakshmanan oscillator is uniquely reduced to the associated Legendre differential equation, their eigenfunctions cannot be represented in terms of the associated Legendre polynomials with integral degree and order.
Rather the eigenfunctions are represented in terms of associated Legendre polynomials with non-integral degree and order.
We here explore such polynomials and represent the discrete and continuum states of the system.
We also exploit the connection between associated Legendre polynomials with non-integral degree with other orthogonal polynomials such as Jacobi and Gegenbauer polynomials.
Related Results
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
The rapid expansion of the fintech sector has brought with it an increasing demand for robust and sophisticated fraud detection systems capable of managing large volumes of financi...
Advancements in Quantum Computing and Information Science
Advancements in Quantum Computing and Information Science
Abstract: The chapter "Advancements in Quantum Computing and Information Science" explores the fundamental principles, historical development, and modern applications of quantum co...
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
The rapid advancements in artificial intelligence (AI) and quantum computing have catalyzed an unprecedented shift in the methodologies utilized for healthcare diagnostics and trea...
The Lagrangian and Hamiltonian for the Two-Dimensional Mathews-Lakshmanan Oscillator
The Lagrangian and Hamiltonian for the Two-Dimensional Mathews-Lakshmanan Oscillator
The purpose of this paper is to illustrate the theory and methods of analytical mechanics that can be effectively applied to the research of some nonlinear nonconservative systems ...
Quantum information outside quantum information
Quantum information outside quantum information
Quantum theory, as counter-intuitive as a theory can get, has turned out to make predictions of the physical world that match observations so precisely that it has been described a...
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
The advent of quantum computing has introduced significant potential to revolutionize healthcare through quantum neural networks (QNNs), offering unprecedented capabilities in proc...
Breast Carcinoma within Fibroadenoma: A Systematic Review
Breast Carcinoma within Fibroadenoma: A Systematic Review
Abstract
Introduction
Fibroadenoma is the most common benign breast lesion; however, it carries a potential risk of malignant transformation. This systematic review provides an ove...
Quantum metamaterials: Applications in quantum information science
Quantum metamaterials: Applications in quantum information science
Metamaterials are a class of artificially engineered materials with periodic structures possessing exceptional properties not found in conventional materials. This definition can b...

