Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Strong Equality of Perfect Roman and Weak Roman Domination in Trees

View through CrossRef
Let G = ( V , E ) be a graph and f : V ⟶ { 0 , 1 , 2 } be a function. Given a vertex u with f ( u ) = 0 , if all neighbors of u have zero weights, then u is called undefended with respect to f. Furthermore, if every vertex u with f ( u ) = 0 has a neighbor v with f ( v ) > 0 and the function f ′ : V ⟶ { 0 , 1 , 2 } with f ′ ( u ) = 1 , f ′ ( v ) = f ( v ) − 1 , f ′ ( w ) = f ( w ) if w ∈ V ∖ { u , v } has no undefended vertex, then f is called a weak Roman dominating function. Also, the function f is a perfect Roman dominating function if every vertex u with f ( u ) = 0 is adjacent to exactly one vertex v for which f ( v ) = 2 . Let the weight of f be w ( f ) = ∑ v ∈ V f ( v ) . The weak (resp., perfect) Roman domination number, denoted by γ r ( G ) (resp., γ R p ( G ) ), is the minimum weight of the weak (resp., perfect) Roman dominating function in G. In this paper, we characterize those trees where the perfect Roman domination number strongly equals the weak Roman domination number, in the sense that each weak Roman dominating function of minimum weight is, at the same time, perfect Roman dominating.
Title: Strong Equality of Perfect Roman and Weak Roman Domination in Trees
Description:
Let G = ( V , E ) be a graph and f : V ⟶ { 0 , 1 , 2 } be a function.
Given a vertex u with f ( u ) = 0 , if all neighbors of u have zero weights, then u is called undefended with respect to f.
Furthermore, if every vertex u with f ( u ) = 0 has a neighbor v with f ( v ) > 0 and the function f ′ : V ⟶ { 0 , 1 , 2 } with f ′ ( u ) = 1 , f ′ ( v ) = f ( v ) − 1 , f ′ ( w ) = f ( w ) if w ∈ V ∖ { u , v } has no undefended vertex, then f is called a weak Roman dominating function.
Also, the function f is a perfect Roman dominating function if every vertex u with f ( u ) = 0 is adjacent to exactly one vertex v for which f ( v ) = 2 .
Let the weight of f be w ( f ) = ∑ v ∈ V f ( v ) .
The weak (resp.
, perfect) Roman domination number, denoted by γ r ( G ) (resp.
, γ R p ( G ) ), is the minimum weight of the weak (resp.
, perfect) Roman dominating function in G.
In this paper, we characterize those trees where the perfect Roman domination number strongly equals the weak Roman domination number, in the sense that each weak Roman dominating function of minimum weight is, at the same time, perfect Roman dominating.

Related Results

Hubungan Perilaku Pola Makan dengan Kejadian Anak Obesitas
Hubungan Perilaku Pola Makan dengan Kejadian Anak Obesitas
<p><em><span style="font-size: 11.0pt; font-family: 'Times New Roman',serif; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: EN-US; mso-fareast-langua...
Domination of Polynomial with Application
Domination of Polynomial with Application
In this paper, .We .initiate the study of domination. polynomial , consider G=(V,E) be a simple, finite, and directed graph without. isolated. vertex .We present a study of the Ira...
Makna Puisi Kotoba (言葉) Karya Tanikawa Shuntaro: Analisis Semiotika Riffa Terre
Makna Puisi Kotoba (言葉) Karya Tanikawa Shuntaro: Analisis Semiotika Riffa Terre
<p><em>Abstrak</em> - <strong>Penelitian ini bertujuan untuk untuk menemukan makna dalam puisi <em>Kotoba</em> karya Tanikawa Shuntaro.</stro...
Motivasi Berjilbab Mahasiswi Universitas Al Azhar Indonesia (UAI)
Motivasi Berjilbab Mahasiswi Universitas Al Azhar Indonesia (UAI)
<p><em>Abstrak – </em><strong>Titik tolak penelitian ini adalah untuk menelusuri secara ilmiah motivasi berjilbab mahasiswi UAI –khususnya mereka yang berji...
Rancangan Service Scorecard sebagai Pengukuran Kinerja Pelayanan Cargo
Rancangan Service Scorecard sebagai Pengukuran Kinerja Pelayanan Cargo
<p><em>Abstrak<strong> – </strong></em><strong>Persaingan antara pelaku bisnis </strong><strong><em>charter flight</em>&...
Sb, As and W contents of magmas: insights from geochemical databases
Sb, As and W contents of magmas: insights from geochemical databases
&lt;p&gt; Magmatic heat sources allow hydrothermal fluids to transport and deposit various types of metals and metalloids. For instance, antimony (Sb) is frequently spatial...
Domination of polynomial with application
Domination of polynomial with application
In this paper, .We .initiate the study of domination. polynomial , consider G=(V,E) be a simple, finite, and directed graph without. isolated. vertex .We present a study of the Ira...

Back to Top