Javascript must be enabled to continue!
Deep Neural Networks for Human’s Fall-risk Prediction using Force-Plate Time Series Signal
View through CrossRef
ABSTRACTEarly and accurate identification of the balance deficits could reduce falls, in particular for older adults, a prone population. Our work investigates deep neural networks’ capacity to identify human balance patterns towards predicting fall-risk. Human balance ability can be characterized based on commonly-used balance metrics, such as those derived from the force-plate time series. We hypothesized that low, moderate, and high risk of falling can be characterized based on balance metrics, derived from the force-plate time series, in conjunction with deep learning algorithms. Further, we predicted that our proposed One-One-One Deep Neural Networks algorithm provides a considerable increase in performance compared to other algorithms. Here, an open source force-plate dataset, which quantified human balance from a wide demographic of human participants (163 females and males aged 18-86) for varied standing conditions (eyes-open firm surface, eyes-closed firm surface, eyes-open foam surface, eyes-closed foam surface) was used. Classification was based on one of the several indicators of fall-risk tied to the fear of falling: the clinically-used Falls Efficacy Scale (FES) assessment. For human fall-risk prediction, the deep learning architecture implemented comprised of: Recurrent Neural Network (RNN), Long-Short Time Memory (LSTM), One Dimensional Convolutional Neural Network (1D-CNN), and a proposed One-One-One Deep Neural Network. Results showed that our One-One-One Deep Neural Networks algorithm outperformed the other aforementioned algorithms and state-of-the-art models on the same dataset. With an accuracy, precision, and sensitivity of 99.9%, 100%, 100%, respectively at the 12th epoch, we found that our proposed One-One-One Deep Neural Network model is the most efficient neural network in predicting human’s fall-risk (based on the FES measure) using the force-plate time series signal. This is a novel methodology for an accurate prediction of human risk of fall.
Title: Deep Neural Networks for Human’s Fall-risk Prediction using Force-Plate Time Series Signal
Description:
ABSTRACTEarly and accurate identification of the balance deficits could reduce falls, in particular for older adults, a prone population.
Our work investigates deep neural networks’ capacity to identify human balance patterns towards predicting fall-risk.
Human balance ability can be characterized based on commonly-used balance metrics, such as those derived from the force-plate time series.
We hypothesized that low, moderate, and high risk of falling can be characterized based on balance metrics, derived from the force-plate time series, in conjunction with deep learning algorithms.
Further, we predicted that our proposed One-One-One Deep Neural Networks algorithm provides a considerable increase in performance compared to other algorithms.
Here, an open source force-plate dataset, which quantified human balance from a wide demographic of human participants (163 females and males aged 18-86) for varied standing conditions (eyes-open firm surface, eyes-closed firm surface, eyes-open foam surface, eyes-closed foam surface) was used.
Classification was based on one of the several indicators of fall-risk tied to the fear of falling: the clinically-used Falls Efficacy Scale (FES) assessment.
For human fall-risk prediction, the deep learning architecture implemented comprised of: Recurrent Neural Network (RNN), Long-Short Time Memory (LSTM), One Dimensional Convolutional Neural Network (1D-CNN), and a proposed One-One-One Deep Neural Network.
Results showed that our One-One-One Deep Neural Networks algorithm outperformed the other aforementioned algorithms and state-of-the-art models on the same dataset.
With an accuracy, precision, and sensitivity of 99.
9%, 100%, 100%, respectively at the 12th epoch, we found that our proposed One-One-One Deep Neural Network model is the most efficient neural network in predicting human’s fall-risk (based on the FES measure) using the force-plate time series signal.
This is a novel methodology for an accurate prediction of human risk of fall.
Related Results
Fuzzy Chaotic Neural Networks
Fuzzy Chaotic Neural Networks
An understanding of the human brain’s local function has improved in recent years. But the cognition of human brain’s working process as a whole is still obscure. Both fuzzy logic ...
On the role of network dynamics for information processing in artificial and biological neural networks
On the role of network dynamics for information processing in artificial and biological neural networks
Understanding how interactions in complex systems give rise to various collective behaviours has been of interest for researchers across a wide range of fields. However, despite ma...
Fall Risk Assessment Using Morse Fall Scale and STRATIFY Fall Scale
Fall Risk Assessment Using Morse Fall Scale and STRATIFY Fall Scale
Abstract: The purpose of this study was to identify the value of fall risk assessment using Morse fall scale and STRATIFY fall scale, to identify the sensitivity and specificity of...
Prediction using Machine Learning
Prediction using Machine Learning
This chapter begins with a concise introduction to machine learning and the
classification of machine learning systems (supervised learning, unsupervised learning,
and reinforcemen...
Traffic Prediction in 5G Networks Using Machine Learning
Traffic Prediction in 5G Networks Using Machine Learning
The advent of 5G technology promises a paradigm shift in the realm of
telecommunications, offering unprecedented speeds and connectivity. However, the
...
TYPES OF AI ALGORİTHMS USED İN TRAFFİC FLOW PREDİCTİON
TYPES OF AI ALGORİTHMS USED İN TRAFFİC FLOW PREDİCTİON
The increasing complexity of urban transportation systems and the growing volume of vehicles have made traffic congestion a persistent challenge in modern cities. Efficient traffic...
Deep convolutional neural network and IoT technology for healthcare
Deep convolutional neural network and IoT technology for healthcare
Background Deep Learning is an AI technology that trains computers to analyze data in an approach similar to the human brain. Deep learning algorithms can find complex patterns in ...
Adaptive hybrid potential evapotranspiration (PET) prediction method based on automatic machine learning
Adaptive hybrid potential evapotranspiration (PET) prediction method based on automatic machine learning
Abstract
In arid areas, estimation of crop water demand through potential evapotranspiration (PET) forecast has a guiding effect on water-saving irrigation, to cope with th...

