Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Rock Unloading Failure Precursor Based on Acoustic Emission Parametric Fractal Characteristics

View through CrossRef
Abstract The mechanical response characteristics and occurrence mechanism of coal and rock under unloading conditions are key to evaluating the stability and control of engineering rock excavation. Triaxial unloading confining pressure tests of coal and rock based on different unloading rates and different initial confining pressure conditions were conducted with fractal theory, research into the fractal characteristics of coal and rock acoustic emission time series under an unloading confining pressure, and the correlations with the unloading failure of coal and rock. The correlation dimension of the acoustic emission signal showed a variation law of a sudden increase, followed by a decrease, increase, and continuous decrease during the experiment. The average time differences between the time when the correlation dimension of coal and sandstone decreased and the actual fracture time of the rock sample were 13.6 s and 16.7 s, respectively. The change in correlation dimension showed the change in internal damage and fracture of the rock sample during the test. The HURST exponent of the acoustic emission time series was calculated at the beginning of the loading. The HURST index showed an overall stable trend and fluctuated around 0.5. A sudden drop in the HURST index resulted when the axial load reached 85% of the peak stress of the rock sample. When the HURST index dropped suddenly (minimum less than 0.2) and then increased rapidly (maximum above 0.8), the rock sample was close to rupture. A HURST index of 0.8 can be used as an index of rock sample unloading and fracture.
Title: Rock Unloading Failure Precursor Based on Acoustic Emission Parametric Fractal Characteristics
Description:
Abstract The mechanical response characteristics and occurrence mechanism of coal and rock under unloading conditions are key to evaluating the stability and control of engineering rock excavation.
Triaxial unloading confining pressure tests of coal and rock based on different unloading rates and different initial confining pressure conditions were conducted with fractal theory, research into the fractal characteristics of coal and rock acoustic emission time series under an unloading confining pressure, and the correlations with the unloading failure of coal and rock.
The correlation dimension of the acoustic emission signal showed a variation law of a sudden increase, followed by a decrease, increase, and continuous decrease during the experiment.
The average time differences between the time when the correlation dimension of coal and sandstone decreased and the actual fracture time of the rock sample were 13.
6 s and 16.
7 s, respectively.
The change in correlation dimension showed the change in internal damage and fracture of the rock sample during the test.
The HURST exponent of the acoustic emission time series was calculated at the beginning of the loading.
The HURST index showed an overall stable trend and fluctuated around 0.
5.
A sudden drop in the HURST index resulted when the axial load reached 85% of the peak stress of the rock sample.
When the HURST index dropped suddenly (minimum less than 0.
2) and then increased rapidly (maximum above 0.
8), the rock sample was close to rupture.
A HURST index of 0.
8 can be used as an index of rock sample unloading and fracture.

Related Results

Investigation of the Relationship Between Rock Brittleness and Brittle Fragmentation
Investigation of the Relationship Between Rock Brittleness and Brittle Fragmentation
ABSTRACT: Fragmentation characteristics can provide a good basis for identifying the brittleness level and failure mode in rock materials. Investigating the rock ...
Reliability-based design (RBD) of shallow foundations on rock masses
Reliability-based design (RBD) of shallow foundations on rock masses
[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] The reliability-based design (RBD) approach that separately accounts for variability and uncertainty in load(...
Dynamic Rigid Fractal Spacetime Manifold Theory
Dynamic Rigid Fractal Spacetime Manifold Theory
This paper proposes an innovative framework, the Dynamic Rigid Fractal Spacetime Manifold Theory (DRFSMT), which integrates fractal and noncommutative algebra to provide a unified ...
Acoustics of Fractal Porous Material and Fractional Calculus
Acoustics of Fractal Porous Material and Fractional Calculus
In this paper, we present a fractal (self-similar) model of acoustic propagation in a porous material with a rigid structure. The fractal medium is modeled as a continuous medium o...
Research on Acoustic Emission Source Localization Technology Based on AI Deep Learning
Research on Acoustic Emission Source Localization Technology Based on AI Deep Learning
Acoustic emission source localization is the basic function of the application of acoustic emission technology. For complex structures, mathematical analysis positioning algorithms...
Log Unloading at Logging Enterprise Berths
Log Unloading at Logging Enterprise Berths
In the development of market economy in Russia, the main trend in the log processing industry is the implementation of the cutting edge technology and effective innovation in order...
Thermal Transport of Graphene Sheets with Fractal Defects
Thermal Transport of Graphene Sheets with Fractal Defects
Graphene combined with fractal structures would probably be a promising candidate design of an antenna for a wireless communication system. However, the thermal transport propertie...
Saturation Exponents Derived from Fractal Modeling of Thin-sections
Saturation Exponents Derived from Fractal Modeling of Thin-sections
Abstract Determination of the initial saturation of a hydrocarbon reservoir requires resistivity log data and saturation exponent. A number of experimental invest...

Back to Top