Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Controls on Greenland moulin geometry and evolution from the Moulin Shape model

View through CrossRef
Abstract. Nearly all meltwater from glaciers and ice sheets is routed englacially through moulins. Therefore, the geometry and evolution of moulins has the potential to influence subglacial water pressure variations, ice motion, and the runoff hydrograph delivered to the ocean. We develop the Moulin Shape (MouSh) model, a time-evolving model of moulin geometry. MouSh models ice deformation around a moulin using both viscous and elastic rheologies and melting within the moulin through heat dissipation from turbulent water flow, both above and below the water line. We force MouSh with idealized and realistic surface melt inputs. Our results show that, under realistic surface melt inputs, variations in surface melt change the geometry of a moulin by approximately 10 % daily and over 100 % seasonally. These size variations cause observable differences in moulin water storage capacity and moulin water levels compared to a static, cylindrical moulin. Our results suggest that moulins are important storage reservoirs for meltwater, with storage capacity and water levels varying over multiple timescales. Implementing realistic moulin geometry within subglacial hydrologic models may therefore improve the representation of subglacial pressures, especially over seasonal periods or in regions where overburden pressures are high.
Title: Controls on Greenland moulin geometry and evolution from the Moulin Shape model
Description:
Abstract.
Nearly all meltwater from glaciers and ice sheets is routed englacially through moulins.
Therefore, the geometry and evolution of moulins has the potential to influence subglacial water pressure variations, ice motion, and the runoff hydrograph delivered to the ocean.
We develop the Moulin Shape (MouSh) model, a time-evolving model of moulin geometry.
MouSh models ice deformation around a moulin using both viscous and elastic rheologies and melting within the moulin through heat dissipation from turbulent water flow, both above and below the water line.
We force MouSh with idealized and realistic surface melt inputs.
Our results show that, under realistic surface melt inputs, variations in surface melt change the geometry of a moulin by approximately 10 % daily and over 100 % seasonally.
These size variations cause observable differences in moulin water storage capacity and moulin water levels compared to a static, cylindrical moulin.
Our results suggest that moulins are important storage reservoirs for meltwater, with storage capacity and water levels varying over multiple timescales.
Implementing realistic moulin geometry within subglacial hydrologic models may therefore improve the representation of subglacial pressures, especially over seasonal periods or in regions where overburden pressures are high.

Related Results

Controls on Greenland moulin geometry and evolution from the Moulin Shape model
Controls on Greenland moulin geometry and evolution from the Moulin Shape model
Abstract. Nearly all meltwater from glaciers and ice sheets is routed englacially through moulins, which collectively comprise approximately 10–14 % of the efficient englacial–subg...
Categorisation of the length of bowhead whales from British Arctic whaling records
Categorisation of the length of bowhead whales from British Arctic whaling records
British whalers were the first and last from Europe to hunt bowhead whales (Balaena mysticetus) commercially from the Arctic whaling grounds of the Greenland Sea (East Greenland-Sv...
Recent evolution of the greenlandic ice shelves 
Recent evolution of the greenlandic ice shelves 
<div>In the northern parts of Greenland, which hold more than 2.7 m of sea level equivalent, the ice flows through ice shelves, as in Antarctica. These floating platf...
Chemical Distribution Patterns across the west Greenland Shelf: The Roles of Ocean Currents, Sea Ice Melt, and Freshwater Runoff
Chemical Distribution Patterns across the west Greenland Shelf: The Roles of Ocean Currents, Sea Ice Melt, and Freshwater Runoff
The west Greenland shelf is a dynamic marine environment influenced by various physicochemical and biological processes. We captured a high-resolution, large-scale snapshot of vari...
Recent Convection Decline in the Greenland Sea - insights from the Mercator Ocean System over 2008-202
Recent Convection Decline in the Greenland Sea - insights from the Mercator Ocean System over 2008-202
We investigated wintertime convection evolution in the past two decades over the Greenland Sea. This area is a major location regarding dense water production and supply of the low...
Structure, variability, and dynamics of the West Greenland Boundary Current System
Structure, variability, and dynamics of the West Greenland Boundary Current System
The ventilation of intermediate waters in the Labrador Sea has important implications for the strength of the Atlantic Meridional Overturning Circulation. Boundary current-interior...
The radiocarbon reservoir age of coastal Greenland waters
The radiocarbon reservoir age of coastal Greenland waters
<p>Radiocarbon (<sup>14</sup>C) dating is the standard method for obtaining the age of marine sediments of Holocene and late Pleistocene a...
Optimal Kinetic-Impact Geometry for Asteroid Deflection
Optimal Kinetic-Impact Geometry for Asteroid Deflection
<p><strong>Introduction</strong></p> <p>Kinetic impact is recognized as an effective and feasibl...

Back to Top