Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

L51619 Effects of Loading on the Growth Rates in Deep Stress-Corrosion Cracks

View through CrossRef
With the development of improved techniques for detection of stress corrosion cracks in existing pipelines, the pipeline industry is faced with the problem of estimating the growth rates of these cracks. Current efforts in model development are addressing the problem but, in order to verify these models, accurate average crack velocity data are needed (average crack velocity being defined as the average rate of crack growth with time, crack velocity is the instantaneous rate of crack tip dissolution.) Currently available data are limited and are based primarily on either slow-strain rate tests or tapered tensile tests. The loading conditions in the former are unrepresentative of actual operating conditions while the crack depths in the latter are much shallower than those observed in service. Some fracture mechanics data also are available for this system but the specimen and crack geometry used in these tests are not similar to the geometry of the field failures*. In addition, results of recent PRCI research suggest that the stress intensity parameter, K, which is used to relate different cracking geometries, is a poor crack driving force parameter for SCC in line pipe steels. The overall objective of this work is to obtain accurate average crack velocity data as a function of crack depth and loading conditions. The program is divided into two tasks: Task 1 - Effect of Crack Depth and Cyclic Loading Conditions on Crack Growth and Task 2 - Inhibition of Crack Growth.
Pipeline Research Council International, Inc. (PRCI)
Title: L51619 Effects of Loading on the Growth Rates in Deep Stress-Corrosion Cracks
Description:
With the development of improved techniques for detection of stress corrosion cracks in existing pipelines, the pipeline industry is faced with the problem of estimating the growth rates of these cracks.
Current efforts in model development are addressing the problem but, in order to verify these models, accurate average crack velocity data are needed (average crack velocity being defined as the average rate of crack growth with time, crack velocity is the instantaneous rate of crack tip dissolution.
) Currently available data are limited and are based primarily on either slow-strain rate tests or tapered tensile tests.
The loading conditions in the former are unrepresentative of actual operating conditions while the crack depths in the latter are much shallower than those observed in service.
Some fracture mechanics data also are available for this system but the specimen and crack geometry used in these tests are not similar to the geometry of the field failures*.
In addition, results of recent PRCI research suggest that the stress intensity parameter, K, which is used to relate different cracking geometries, is a poor crack driving force parameter for SCC in line pipe steels.
The overall objective of this work is to obtain accurate average crack velocity data as a function of crack depth and loading conditions.
The program is divided into two tasks: Task 1 - Effect of Crack Depth and Cyclic Loading Conditions on Crack Growth and Task 2 - Inhibition of Crack Growth.

Related Results

Stress Corrosion Testing Methods
Stress Corrosion Testing Methods
Stress corrosion tests are conducted for a variety of reasons, the reason frequently determining the type of test. Some of the reasons are: (1) Evaluate a metal or alloy, or variou...
Evaluating Corrosion Inhibitors For Sour Gas Subsea Pipelines
Evaluating Corrosion Inhibitors For Sour Gas Subsea Pipelines
Abstract Using subsea carbon steel pipelines to transport wet sour gas possesses huge challenges to the operators to maintain the high level of the Assets and Ope...
Two-dimensional numerical analysis of differential concentration corrosion in seawater pipeline
Two-dimensional numerical analysis of differential concentration corrosion in seawater pipeline
Purpose The purpose of this paper is to develop a new two-dimensional differential concentration corrosion mathematical model based on the knowledge that oxygen distribution on the...
The compressive creep of rockfill
The compressive creep of rockfill
Abstract Multistage constant stress rates loading-creep tests were carried out on air-dried slate rockfill. The influences of the loading history on the creep deformation o...
Study on Crack Propagation Tendencies of Non-Repaired and Repaired Nozzles
Study on Crack Propagation Tendencies of Non-Repaired and Repaired Nozzles
A system designed to control and predict the length of cracks that generate in the first-stage nozzles of E and F class gas turbines was developed. This system consists of three pr...
Study on Crack Propagation Tendencies of Non-Repaired and Repaired Nozzles
Study on Crack Propagation Tendencies of Non-Repaired and Repaired Nozzles
A system designed to control and predict the length of cracks that generate in the first-stage nozzles of E and F class gas turbines was developed. This system consists of three pr...
Evolution of Antimicrobial Resistance in Community vs. Hospital-Acquired Infections
Evolution of Antimicrobial Resistance in Community vs. Hospital-Acquired Infections
Abstract Introduction Hospitals are high-risk environments for infections. Despite the global recognition of these pathogens, few studies compare microorganisms from community-acqu...
Numerical simulation for carbon steel flow‐induced corrosion in high‐velocity flow seawater
Numerical simulation for carbon steel flow‐induced corrosion in high‐velocity flow seawater
PurposeThis paper aims to study flow‐induced corrosion mechanisms for carbon steel in high‐velocity flowing seawater and to explain corrosive phenomena.Design/methodology/approachA...

Back to Top