Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Comparison of human mesenchymal stem cells proliferation and differentiation on poly(methyl methacrylate) bone cements with and without mineralized collagen incorporation

View through CrossRef
Poly(methyl methacrylate) bone cement is widely used in vertebroplasty, joint replacement surgery, and other orthopaedic surgeries, while it also exposed many problems on mechanical property and biocompatibility. Better performance in mechanical match and bone integration is highly desirable. Recently, there reported that incorporation of mineralized collagen into poly(methyl methacrylate) showed positive results in mechanical property and osteointegration ability in vivo. In the present study, we focused on the comparison of osteogenic behavior between mineralized collagen incorporated in poly(methyl methacrylate) and poly(methyl methacrylate). Human marrow mesenchymal stem cells are used in this experiment. Adhesion and proliferation were used to characterize biocompatibility. Activity of alkaline phosphatase was used to assess the differentiation of human marrow mesenchymal stem cells into osteoblasts. Real-time PCR was performed to detect the expression of osteoblast-related markers at messenger RNA level. The results show that osteogenic differentiation on mineralized collagen incorporated in poly(methyl methacrylate) bone cement is more than two times higher than that of poly(methyl methacrylate) after culturing for 21 days. Thus, important mechanism on mineralized collagen incorporation increasing the osteogenetic ability of poly(methyl methacrylate) bone cement may be understood in this concern.
Title: Comparison of human mesenchymal stem cells proliferation and differentiation on poly(methyl methacrylate) bone cements with and without mineralized collagen incorporation
Description:
Poly(methyl methacrylate) bone cement is widely used in vertebroplasty, joint replacement surgery, and other orthopaedic surgeries, while it also exposed many problems on mechanical property and biocompatibility.
Better performance in mechanical match and bone integration is highly desirable.
Recently, there reported that incorporation of mineralized collagen into poly(methyl methacrylate) showed positive results in mechanical property and osteointegration ability in vivo.
In the present study, we focused on the comparison of osteogenic behavior between mineralized collagen incorporated in poly(methyl methacrylate) and poly(methyl methacrylate).
Human marrow mesenchymal stem cells are used in this experiment.
Adhesion and proliferation were used to characterize biocompatibility.
Activity of alkaline phosphatase was used to assess the differentiation of human marrow mesenchymal stem cells into osteoblasts.
Real-time PCR was performed to detect the expression of osteoblast-related markers at messenger RNA level.
The results show that osteogenic differentiation on mineralized collagen incorporated in poly(methyl methacrylate) bone cement is more than two times higher than that of poly(methyl methacrylate) after culturing for 21 days.
Thus, important mechanism on mineralized collagen incorporation increasing the osteogenetic ability of poly(methyl methacrylate) bone cement may be understood in this concern.

Related Results

Stem cells
Stem cells
What is a stem cell? The term is a combination of ‘cell’ and ‘stem’. A cell is a major category of living thing, while a stem is a site of growth and support for something else. In...
Differential marker expression by cultures rich in mesenchymal stem cells
Differential marker expression by cultures rich in mesenchymal stem cells
AbstractBackgroundMesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires...
Poster 107: The Use of Coacervate Sustained Release System to Identify the Most Potent BMP for Bone Regeneration
Poster 107: The Use of Coacervate Sustained Release System to Identify the Most Potent BMP for Bone Regeneration
Objectives: Bone morphogenetic proteins (BMPs) belong to the transforming growth factor superfamily that were first discovered by Marshall Urist. There are 14 BMPs identified to da...
Novel phosphate-based cements for clinical applications
Novel phosphate-based cements for clinical applications
This Thesis aims at the development of two novel families of inorganic phosphate cements with suitable characteristics for clinical applications in hard tissue regeneration or repl...
Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells
Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells
AbstractBackgroundThe bone morphogenetic proteins (BMPs) belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiati...
Factors Affecting the Production of Poly Methyl Galacturonase Enzyme by Sclerotium rolfsii Sacc
Factors Affecting the Production of Poly Methyl Galacturonase Enzyme by Sclerotium rolfsii Sacc
The aim of this work was to investigate the effects of different culture conditions on the production of poly methyl galacturonase enzyme bySclerotium rolfsii and their optimizatio...

Back to Top