Javascript must be enabled to continue!
Assessment of precipitation and near-surface temperature simulation by CMIP6 models in South America
View through CrossRef
Abstract
This study evaluated the performance of 50 global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) in simulating the statistical features of precipitation and air temperature in five subdomains of South America during the historical period (1995–2014). Monthly precipitation and temperature simulations were validated with data from the Climate Prediction Center Merged Analysis of Precipitation, the Global Precipitation Climatology Project, and the ERA5 reanalysis. The models’ performance was evaluated using a ranking analysis with statistical metrics such as mean, standard deviation, Pearson’s spatial correlation, annual cycle amplitude, and linear trend. The analyses considered the representation of precipitation and air temperature separately for each subdomain, the representation for all five regions together, and the joint representation of precipitation and air temperature for all five subdomains. In the Brazilian Amazon, the best-performing models were EC-Earth3-Veg, INM-CM4-8, and INMCM5-0 (precipitation), and IPSL-CM6A-LR, MPI-ESM2-0, and IITM-ESM (temperature). In the La Plata Basin, KACE-1-0-G, ACCESS-CM2, and IPSL-CM6A-LR (precipitation), and GFDL-ESM4, TaiESM1, and EC-Earth3-Veg (temperature) yielded the best simulations. In Northeast Brazil, SAM0-UNICON, CESM2, and MCM-UA-1-0 (precipitation), BCC-CSM2-MR, KACE-1-0-G, and CESM2 (temperature) showed the best results. In Argentine Patagonia, the GCMs ACCESS-CM2, ACCESS-ESM1-5 and EC-Earth3-Veg-LR (precipitation), and CAMS-CSM1-0, CMCC-CM2-HR4, and GFDL-ESM4 (temperature) outperformed. Finally, for Southeast Brazil, the models ACCESS-CM2, ACCESS-ESM1-5, and EC-Earth3-Veg-LR (precipitation), and CAMS-CSM1-0, CMCC-CM2-HR4, and GFDL-ESM4 (temperature) yielded the best simulations. The joint evaluation of the regions and variables indicated that the best models are CESM2, TaiESM1, CMCC-CM2-HR4, FIO-ESM-2-0, and MRI-ESM2-0.
Title: Assessment of precipitation and near-surface temperature simulation by CMIP6 models in South America
Description:
Abstract
This study evaluated the performance of 50 global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) in simulating the statistical features of precipitation and air temperature in five subdomains of South America during the historical period (1995–2014).
Monthly precipitation and temperature simulations were validated with data from the Climate Prediction Center Merged Analysis of Precipitation, the Global Precipitation Climatology Project, and the ERA5 reanalysis.
The models’ performance was evaluated using a ranking analysis with statistical metrics such as mean, standard deviation, Pearson’s spatial correlation, annual cycle amplitude, and linear trend.
The analyses considered the representation of precipitation and air temperature separately for each subdomain, the representation for all five regions together, and the joint representation of precipitation and air temperature for all five subdomains.
In the Brazilian Amazon, the best-performing models were EC-Earth3-Veg, INM-CM4-8, and INMCM5-0 (precipitation), and IPSL-CM6A-LR, MPI-ESM2-0, and IITM-ESM (temperature).
In the La Plata Basin, KACE-1-0-G, ACCESS-CM2, and IPSL-CM6A-LR (precipitation), and GFDL-ESM4, TaiESM1, and EC-Earth3-Veg (temperature) yielded the best simulations.
In Northeast Brazil, SAM0-UNICON, CESM2, and MCM-UA-1-0 (precipitation), BCC-CSM2-MR, KACE-1-0-G, and CESM2 (temperature) showed the best results.
In Argentine Patagonia, the GCMs ACCESS-CM2, ACCESS-ESM1-5 and EC-Earth3-Veg-LR (precipitation), and CAMS-CSM1-0, CMCC-CM2-HR4, and GFDL-ESM4 (temperature) outperformed.
Finally, for Southeast Brazil, the models ACCESS-CM2, ACCESS-ESM1-5, and EC-Earth3-Veg-LR (precipitation), and CAMS-CSM1-0, CMCC-CM2-HR4, and GFDL-ESM4 (temperature) yielded the best simulations.
The joint evaluation of the regions and variables indicated that the best models are CESM2, TaiESM1, CMCC-CM2-HR4, FIO-ESM-2-0, and MRI-ESM2-0.
Related Results
The Global Energy Balance as represented in CMIP6 climate models
The Global Energy Balance as represented in CMIP6 climate models
A plausible simulation of the global energy balance is a first-order requirement for a credible climate model. Therefore we investigate the representation of the global energy bala...
Variability of condensed water path and precipitation over Africa.
Variability of condensed water path and precipitation over Africa.
To gain a deeper understanding of precipitation variability, it is essential to also examine the variability of the condensed water path, which is vertically integrated mass of con...
Extreme Climate Trends in California Central Valley: Insights from CMIP6
Extreme Climate Trends in California Central Valley: Insights from CMIP6
Estimation of extreme climate trends is a crucial, influential, and also
controversial step in long-term water resources planning studies. One of
the main approaches to capturing t...
Study on Urban Thermal Environment based on Diurnal Temperature Range
Study on Urban Thermal Environment based on Diurnal Temperature Range
<p>Diurnal temperature range (includes land surface temperature diurnal range and near surface air temperature diurnal range) is an important meteorological parameter...
Mindy Calling: Size, Beauty, Race in The Mindy Project
Mindy Calling: Size, Beauty, Race in The Mindy Project
When characters in the Fox Television sitcom The Mindy Project call Mindy Lahiri fat, Mindy sees it as a case of misidentification. She reminds the character that she is a “petite ...
Entropy‐based spatiotemporal patterns of precipitation regimes in the Huai River basin, China
Entropy‐based spatiotemporal patterns of precipitation regimes in the Huai River basin, China
ABSTRACTSpatiotemporal patterns of precipitation regimes in terms of precipitation amount and number of precipitation days at different time scales are investigated using the entro...
Projected near-future changes in precipitation extremes over Anambra-Imo River Basin inferred from CMIP6 HighResMIP
Projected near-future changes in precipitation extremes over Anambra-Imo River Basin inferred from CMIP6 HighResMIP
Abstract
The southeastern region of Nigeria is susceptible to flood disasters primarily triggered by extreme precipitation with localized impacts. This study uses the Coupl...
Water Towers of the Pamirs: I. Precipitation and temperature trends
Water Towers of the Pamirs: I. Precipitation and temperature trends
<p>Precipitation and temperature changes across the Vakhsh and Panj basins are of great importance for Tajikistan, Afghanistan, Turkmenistan, and Uzbekistan for consu...

