Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Influence of Cumulative Rainfall on the Occurrence of Landslides in Korea

View through CrossRef
This study presents the impact of cumulative rainfall on landslides, following the analysis of cumulative rainfall for 20 days before the landslide. For the 1520 landslides analyzed, the highest amount of average daily rainfall of 52.9mm occurred the day before the landslide, and the least amount of 6.1mm was experienced 20 days before the landslide. The least number of landslides (263 landslides) occurred when the cumulative rainfall is less than 20mm, and increased to 316 landslides in less than 30mm rainfall, 514 landslides in less than 80mm, 842 landslides in less than 150mm, and 678 landslides in 150mm and above. Considering the landslide occurrence in relation to the cumulative rainfall and the cumulative number of days, 986 landslides (64.9%) of the 1520 landslides were triggered by the 3 days cumulative rainfall for the 100mm rainfall and below, and 60% of landslides at the 5 days cumulative rainfall, indicating that the impact of cumulative rainfall on landslides was high in the 3 days and 5 days cumulative rainfall. More landslides occurred for the 101mm-200mm rainfall at the 10 days cumulative rainfall, more landslides for the 201mm-300mm rainfall at the 14 days cumulative rainfall, and more landslides for the 301mm-400mm rainfall at the 18 days cumulative rainfall. Three typologies of cumulative rainfall triggers are evident in Korea which includes: the early stacked rainfall accumulation type; the long-term intensive rainfall accumulation type; the continuous daily rainfall accumulation type. Cumulative rainfall is thus a major factor causing landslides. It is therefore imperative to take into consideration cumulative rainfall and the cumulative number of days as important triggers of landslides, as this could help contribute in landslide forecasting, thus putting in place measures to minimize the damage caused to life and property by landslides.
Title: Influence of Cumulative Rainfall on the Occurrence of Landslides in Korea
Description:
This study presents the impact of cumulative rainfall on landslides, following the analysis of cumulative rainfall for 20 days before the landslide.
For the 1520 landslides analyzed, the highest amount of average daily rainfall of 52.
9mm occurred the day before the landslide, and the least amount of 6.
1mm was experienced 20 days before the landslide.
The least number of landslides (263 landslides) occurred when the cumulative rainfall is less than 20mm, and increased to 316 landslides in less than 30mm rainfall, 514 landslides in less than 80mm, 842 landslides in less than 150mm, and 678 landslides in 150mm and above.
Considering the landslide occurrence in relation to the cumulative rainfall and the cumulative number of days, 986 landslides (64.
9%) of the 1520 landslides were triggered by the 3 days cumulative rainfall for the 100mm rainfall and below, and 60% of landslides at the 5 days cumulative rainfall, indicating that the impact of cumulative rainfall on landslides was high in the 3 days and 5 days cumulative rainfall.
More landslides occurred for the 101mm-200mm rainfall at the 10 days cumulative rainfall, more landslides for the 201mm-300mm rainfall at the 14 days cumulative rainfall, and more landslides for the 301mm-400mm rainfall at the 18 days cumulative rainfall.
Three typologies of cumulative rainfall triggers are evident in Korea which includes: the early stacked rainfall accumulation type; the long-term intensive rainfall accumulation type; the continuous daily rainfall accumulation type.
Cumulative rainfall is thus a major factor causing landslides.
It is therefore imperative to take into consideration cumulative rainfall and the cumulative number of days as important triggers of landslides, as this could help contribute in landslide forecasting, thus putting in place measures to minimize the damage caused to life and property by landslides.

Related Results

Spatial correlation between landslides and geotechnical factors using Random Forest and SHAP
Spatial correlation between landslides and geotechnical factors using Random Forest and SHAP
The activation as well as the consequences of landslides are difficult to predict, as they depend on factors characterized by large variability and uncertainties. The aim of this s...
Rapid Hazard Assessment Model for the Extreme Rainfall-induced Regional Clustered Shallow Landslides
Rapid Hazard Assessment Model for the Extreme Rainfall-induced Regional Clustered Shallow Landslides
The undertaking of stability analysis and impact range prediction of rainfall-induced shallow landslides at the regional scale is of great significance for landslides' early warnin...
Detection and Characterization of Active Landslides with Multisource SAR Data and Remote Sensing in Western Guizhou, China
Detection and Characterization of Active Landslides with Multisource SAR Data and Remote Sensing in Western Guizhou, China
Abstract The western part of Guizhou is located in the second step of East Asia. Although the area is stratigraphically continuous and the surface is dominated by hard lime...
A comparative rainfall threshold study for the initiation of landslides in parts of West Sikkim, Indian Himalaya
A comparative rainfall threshold study for the initiation of landslides in parts of West Sikkim, Indian Himalaya
Rainfall is the primary cause of landslides in the Indian Himalayan Region. As a result, it is crucial to learn how precipitation is connected to the onset of landslides. The preci...
Landslide Hazard Zonation and Evaluation around Debre Werk Town, North West Ethiopia
Landslide Hazard Zonation and Evaluation around Debre Werk Town, North West Ethiopia
Abstract The present research was conducted in the town of Debre Werk, East Gojjam, North West Ethiopia, with the ultimate aim of conducting a Landslide Hazard Zonation and...
Automatic regional identification of active and inactive landslides using satellite image analysis
Automatic regional identification of active and inactive landslides using satellite image analysis
Over the past decades, landslides have significantly affected extensive areas worldwide due to changing environmental conditions and human activities, causing major problems in the...
Anthropogenic causes of landslides and their implications for monitoring
Anthropogenic causes of landslides and their implications for monitoring
<p>Are we justified in referring to all landslides as natural hazards? With the effects of climate change, landslide incidences are increasing all over the world, and...

Back to Top