Javascript must be enabled to continue!
Silicon–Nanodiamond-Based Anode for a Lithium-Ion Battery
View through CrossRef
Maintaining the physical integrity of a silicon-based anode, which suffers from damage caused by severe volume changes during cycling, is a top priority in its practical applications. The performance of silicon-flake-based anodes has been significantly improved by mixing nanodiamond powders with silicon flakes for the fabrication of anodes for lithium-ion batteries (LIBs). Nanodiamonds adhere to the surfaces of silicon flakes and are distributed in the binder between flakes. A consistent and robust solid electrolyte interphase (SEI) is promoted by the aid of abundant reactive surface-linked functional groups and exposed dangling bonds of nanodiamonds, leading to enhanced physical integrity of the silicon flakes and the anode. The battery’s high-rate discharge capabilities and cycle life are thus improved. SEM, Raman spectroscopy, and XRD were applied to examine the structure and morphology of the anode. Electrochemical performance was evaluated to demonstrate a capacity retention of nearly 75% after 200 cycles, with the final specific capacity exceeding 1000 mAh/g at a test current of 4 mA/cm2. This is attributed to the improved stability of the solid electrolyte interphase (SEI) structure that was achieved by integrating nanodiamonds with silicon flakes in the anode, leading to enhanced cycling stability and rapid charge-discharge performance. The results from this study present an effective strategy of achieving high-cycling-performance by adding nanodiamonds to silicon-flake-based anodes.
Title: Silicon–Nanodiamond-Based Anode for a Lithium-Ion Battery
Description:
Maintaining the physical integrity of a silicon-based anode, which suffers from damage caused by severe volume changes during cycling, is a top priority in its practical applications.
The performance of silicon-flake-based anodes has been significantly improved by mixing nanodiamond powders with silicon flakes for the fabrication of anodes for lithium-ion batteries (LIBs).
Nanodiamonds adhere to the surfaces of silicon flakes and are distributed in the binder between flakes.
A consistent and robust solid electrolyte interphase (SEI) is promoted by the aid of abundant reactive surface-linked functional groups and exposed dangling bonds of nanodiamonds, leading to enhanced physical integrity of the silicon flakes and the anode.
The battery’s high-rate discharge capabilities and cycle life are thus improved.
SEM, Raman spectroscopy, and XRD were applied to examine the structure and morphology of the anode.
Electrochemical performance was evaluated to demonstrate a capacity retention of nearly 75% after 200 cycles, with the final specific capacity exceeding 1000 mAh/g at a test current of 4 mA/cm2.
This is attributed to the improved stability of the solid electrolyte interphase (SEI) structure that was achieved by integrating nanodiamonds with silicon flakes in the anode, leading to enhanced cycling stability and rapid charge-discharge performance.
The results from this study present an effective strategy of achieving high-cycling-performance by adding nanodiamonds to silicon-flake-based anodes.
Related Results
Investigation on the Anode Surface of High Specific Energy Li-Ion Batteries
Investigation on the Anode Surface of High Specific Energy Li-Ion Batteries
Lithium-ion batteries have become the most popular secondary battery of electric cars, electronic products and power grids with high specific energy and cycle life. Currently, the ...
Ion Intercalation into Vanadium Sulfides for Battery Applications
Ion Intercalation into Vanadium Sulfides for Battery Applications
Global battery manufacturing capacity will more than double by 2021 to about 280,000 megawatt-hours.1 Rechargeable batteries make up a significant fraction of battery manufacturing...
Flexible High Energy Density Silicon Composite Anode for Structural Batteries
Flexible High Energy Density Silicon Composite Anode for Structural Batteries
The challenges of using high capacity metallic lithium foil as an anode for high energy density lithium battery are still remaining despite many years of research efforts, due to t...
Lithium Prospectivity in the Northeast German and Thuringian Ba-sins
Lithium Prospectivity in the Northeast German and Thuringian Ba-sins
Over the years many boreholes have been drilled into the Northeast German Basin (NEGB) in pursuit of the exploration of hydrocarbons. As well as gaining important information regar...
Annonacin and Squamocin Conjugation with Nanodiamond Alters Metastatic Marker Expression in Breast Cancer Cell Line
Annonacin and Squamocin Conjugation with Nanodiamond Alters Metastatic Marker Expression in Breast Cancer Cell Line
Breast cancer can perform metastasis to distant organs and cause more than 90% of malignancy-related deaths. The anti-metastasis potency of nanodiamond-conjugated annonacin and squ...
LITHIUM HYDROXIDE FORMATION BY MEMBRANE ELECTROLYSIS
LITHIUM HYDROXIDE FORMATION BY MEMBRANE ELECTROLYSIS
The production of high-purity lithium hydroxide (LiOH) solution by electrochemical conversion of soluble lithium salts (membrane electrolysis) was tested on semi-industrial sca...
The Performance of Hard Carbon in a Sodium Ion Battery and Influence of the Sodium Metal in Observed Properties
The Performance of Hard Carbon in a Sodium Ion Battery and Influence of the Sodium Metal in Observed Properties
Since the 1990’s and the commercialisation of the first lithium ion cell by Sony there has been a large focus on new materials for lithium ion batteries, and the work in the 1970’s...
Research on high-rate and repeat frequency discharge lithium battery for electromagnetic launch primary power supply
Research on high-rate and repeat frequency discharge lithium battery for electromagnetic launch primary power supply
Abstract
Lithium battery with excellent comprehensive performance can effectively improve the firing frequency of railgun, firing times of railgun, system integratio...


