Javascript must be enabled to continue!
Abstract A44: Directing personalized breast cancer treatment with pathway signatures
View through CrossRef
Abstract
One of the major limitations in the treatment of breast cancer is the patient to patient heterogeneity of the tumors. This is evidenced by the well-known intrinsic subtypes of breast cancer, including luminal A and B, basal, claudin-low, HER2 and normal like. If one considers the hormonal status (ER / PR) of the breast cancers in addition to the intrinsic subtypes, then additional classifications are apparent. Indeed, recent work has suggested that there are approximately 17 subtypes of breast cancer. With these various types of breast cancer, clinicians are faced with the challenge of determining the optimal treatment strategy for the individual breast cancer patient. When treatment options are considered in this way, it becomes readily apparent that breast cancer, and cancer in general, needs to be treated with a personalized approach. We believe that one mechanism to address the requirement for personalized therapy is to employ cell signaling pathway signatures to differentiate the tumors into treatment groups. As a proof of principle experiment, we have used pathway signatures in a mouse model of breast cancer. The signatures clearly predict various subtypes of cancer in the MMTV-Myc model system with elevation of the EGFR, TNF and Ras pathway in one subtype of tumor whereas these pathways are not predicted to be active in a second subtype of cancer from the same model system. In the second tumor subtype, there is a high predicted activity for other pathways, including Myc, Stat3 and AKT. To demonstrate that these predictive signatures can be used to guide clinical therapy, we then took an approach where we targeted each of the pathways in a combinatorial approach with small molecule inhibitors in transplantable tumors from the initial tumor subtypes. Thus, we have two therapies, each tailored to a specific subtype of a mouse model breast cancer. Safety trials for the combination of the three drugs in each treatment arm revealed that there were no significant side effects when inhibitors were used at the low doses designed for use in therapy. Importantly, we have shown that the predicted combination therapy is effective in blocking tumor growth in the tumor type that is predicted to be responsive while it is ineffective in blocking tumor growth in the other subtype of tumors. These results clearly demonstrate in a proof of principle experiment that using pathway signatures is a viable mechanism for identifying and directing treatment for breast cancer.
Citation Format: Jing-Ru Jhan, Eran Andrechek. Directing personalized breast cancer treatment with pathway signatures. [abstract]. In: Proceedings of the AACR Special Conference: The Translational Impact of Model Organisms in Cancer; Nov 5-8, 2013; San Diego, CA. Philadelphia (PA): AACR; Mol Cancer Res 2014;12(11 Suppl):Abstract nr A44.
American Association for Cancer Research (AACR)
Title: Abstract A44: Directing personalized breast cancer treatment with pathway signatures
Description:
Abstract
One of the major limitations in the treatment of breast cancer is the patient to patient heterogeneity of the tumors.
This is evidenced by the well-known intrinsic subtypes of breast cancer, including luminal A and B, basal, claudin-low, HER2 and normal like.
If one considers the hormonal status (ER / PR) of the breast cancers in addition to the intrinsic subtypes, then additional classifications are apparent.
Indeed, recent work has suggested that there are approximately 17 subtypes of breast cancer.
With these various types of breast cancer, clinicians are faced with the challenge of determining the optimal treatment strategy for the individual breast cancer patient.
When treatment options are considered in this way, it becomes readily apparent that breast cancer, and cancer in general, needs to be treated with a personalized approach.
We believe that one mechanism to address the requirement for personalized therapy is to employ cell signaling pathway signatures to differentiate the tumors into treatment groups.
As a proof of principle experiment, we have used pathway signatures in a mouse model of breast cancer.
The signatures clearly predict various subtypes of cancer in the MMTV-Myc model system with elevation of the EGFR, TNF and Ras pathway in one subtype of tumor whereas these pathways are not predicted to be active in a second subtype of cancer from the same model system.
In the second tumor subtype, there is a high predicted activity for other pathways, including Myc, Stat3 and AKT.
To demonstrate that these predictive signatures can be used to guide clinical therapy, we then took an approach where we targeted each of the pathways in a combinatorial approach with small molecule inhibitors in transplantable tumors from the initial tumor subtypes.
Thus, we have two therapies, each tailored to a specific subtype of a mouse model breast cancer.
Safety trials for the combination of the three drugs in each treatment arm revealed that there were no significant side effects when inhibitors were used at the low doses designed for use in therapy.
Importantly, we have shown that the predicted combination therapy is effective in blocking tumor growth in the tumor type that is predicted to be responsive while it is ineffective in blocking tumor growth in the other subtype of tumors.
These results clearly demonstrate in a proof of principle experiment that using pathway signatures is a viable mechanism for identifying and directing treatment for breast cancer.
Citation Format: Jing-Ru Jhan, Eran Andrechek.
Directing personalized breast cancer treatment with pathway signatures.
[abstract].
In: Proceedings of the AACR Special Conference: The Translational Impact of Model Organisms in Cancer; Nov 5-8, 2013; San Diego, CA.
Philadelphia (PA): AACR; Mol Cancer Res 2014;12(11 Suppl):Abstract nr A44.
Related Results
Breast Carcinoma within Fibroadenoma: A Systematic Review
Breast Carcinoma within Fibroadenoma: A Systematic Review
Abstract
Introduction
Fibroadenoma is the most common benign breast lesion; however, it carries a potential risk of malignant transformation. This systematic review provides an ove...
Desmoid-Type Fibromatosis of The Breast: A Case Series
Desmoid-Type Fibromatosis of The Breast: A Case Series
Abstract
IntroductionDesmoid-type fibromatosis (DTF), also called aggressive fibromatosis, is a rare, benign, locally aggressive condition. Mammary DTF originates from fibroblasts ...
Spanish Breast Cancer Research Group (GEICAM)
Spanish Breast Cancer Research Group (GEICAM)
This section provides current contact details and a summary of recent or ongoing clinical trials being coordinated by Spanish Breast Cancer Research Group (GEICAM). Clinical trials...
Abstract OI-1: OI-1 Decoding breast cancer predisposition genes
Abstract OI-1: OI-1 Decoding breast cancer predisposition genes
Abstract
Women with one or more first-degree female relatives with a history of breast cancer have a two-fold increased risk of developing breast cancer. This risk i...
International Breast Cancer Study Group (IBCSG)
International Breast Cancer Study Group (IBCSG)
This section provides current contact details and a summary of recent or ongoing clinical trials being coordinated by International Breast Cancer Study Group (IBCSG). Clinical tria...
The impact of preoperative breast magnetic resonance imaging (MRI) on surgical decision-making in young patients with breast cancer.
The impact of preoperative breast magnetic resonance imaging (MRI) on surgical decision-making in young patients with breast cancer.
Abstract
Abstract #4012
Recent data suggests that breast MRI is a more sensitive diagnostic test for detecting invasive breast cancer than mammography...
Mutational signatures for breast cancer diagnosis using artificial intelligence
Mutational signatures for breast cancer diagnosis using artificial intelligence
Abstract
Background
Breast cancer is the most common female cancer worldwide. Its diagnosis and prognosis remain scanty, imprecise, and poorly docum...
Abstract B8: Molecular subtyping of epithelial ovarian cancer reveals connections to intrinsic breast cancer subtypes
Abstract B8: Molecular subtyping of epithelial ovarian cancer reveals connections to intrinsic breast cancer subtypes
Abstract
Aim: Epithelial ovarian cancer is one of the most lethal female cancers. It is a heterogeneous group of neoplasms and the different histologic subtypes are ...

