Javascript must be enabled to continue!
Relating force balances and flow length scales in geodynamo simulations
View through CrossRef
SUMMARY
In fluid dynamics, the scaling behaviour of flow length scales is commonly used to infer the governing force balance of a system. The key to a successful approach is to measure length scales that are simultaneously representative of the energy contained in the solution (energetically relevant) and also indicative of the established force balance (dynamically relevant). In the case of numerical simulations of rotating convection and magnetohydrodynamic dynamos in spherical shells, it has remained difficult to measure length scales that are both energetically and dynamically relevant, a situation that has led to conflicting interpretations, and sometimes misrepresentations of the underlying force balance. By analysing an extensive set of magnetic and non-magnetic models, we focus on two length scales that achieve both energetic and dynamical relevance. The first one is the peak of the poloidal kinetic energy spectrum, which we successfully compare to crossover points on spectral representations of the force balance. In most dynamo models, this result confirms that the dominant length scale of the system is controlled by a previously proposed quasi-geostrophic (QG-) MAC (Magneto-Archimedean-Coriolis) balance. In non-magnetic convection models, the analysis generally favours a QG-CIA (Coriolis-Inertia-Archimedean) balance. Viscosity, which is typically a minor contributor to the force balance, does not control the dominant length scale at high convective supercriticalities in the non-magnetic case, and in the dynamo case, once the generated magnetic energy largely exceeds the kinetic energy. In dynamo models, we introduce a second energetically relevant length scale associated with the loss of axial invariance in the flow. We again relate this length scale to another crossover point in scale-dependent force balance diagrams, which marks the transition between large-scale geostrophy (the equilibrium of Coriolis and pressure forces) and small-scale magnetostrophy, where the Lorentz force overtakes the Coriolis force. Scaling analysis of these two energetically and dynamically relevant length scales suggests that the Earth’s dynamo is controlled by a QG-MAC balance at a dominant scale of about $200 \, \mathrm{km}$, while magnetostrophic effects are deferred to scales smaller than $50 \, \mathrm{km}$.
Title: Relating force balances and flow length scales in geodynamo simulations
Description:
SUMMARY
In fluid dynamics, the scaling behaviour of flow length scales is commonly used to infer the governing force balance of a system.
The key to a successful approach is to measure length scales that are simultaneously representative of the energy contained in the solution (energetically relevant) and also indicative of the established force balance (dynamically relevant).
In the case of numerical simulations of rotating convection and magnetohydrodynamic dynamos in spherical shells, it has remained difficult to measure length scales that are both energetically and dynamically relevant, a situation that has led to conflicting interpretations, and sometimes misrepresentations of the underlying force balance.
By analysing an extensive set of magnetic and non-magnetic models, we focus on two length scales that achieve both energetic and dynamical relevance.
The first one is the peak of the poloidal kinetic energy spectrum, which we successfully compare to crossover points on spectral representations of the force balance.
In most dynamo models, this result confirms that the dominant length scale of the system is controlled by a previously proposed quasi-geostrophic (QG-) MAC (Magneto-Archimedean-Coriolis) balance.
In non-magnetic convection models, the analysis generally favours a QG-CIA (Coriolis-Inertia-Archimedean) balance.
Viscosity, which is typically a minor contributor to the force balance, does not control the dominant length scale at high convective supercriticalities in the non-magnetic case, and in the dynamo case, once the generated magnetic energy largely exceeds the kinetic energy.
In dynamo models, we introduce a second energetically relevant length scale associated with the loss of axial invariance in the flow.
We again relate this length scale to another crossover point in scale-dependent force balance diagrams, which marks the transition between large-scale geostrophy (the equilibrium of Coriolis and pressure forces) and small-scale magnetostrophy, where the Lorentz force overtakes the Coriolis force.
Scaling analysis of these two energetically and dynamically relevant length scales suggests that the Earth’s dynamo is controlled by a QG-MAC balance at a dominant scale of about $200 \, \mathrm{km}$, while magnetostrophic effects are deferred to scales smaller than $50 \, \mathrm{km}$.
Related Results
Multiphase Flow Metering:An Evaluation of Discharge Coefficients
Multiphase Flow Metering:An Evaluation of Discharge Coefficients
Abstract
The orifice discharge coefficient (CD) is the constant required to correct theoretical flow rate to actual flow rate. It is known that single phase orifi...
Pressure Analysis of DST Flow Period Or Slug Flow For Horizontal Wells In Homogeneous Reservoir
Pressure Analysis of DST Flow Period Or Slug Flow For Horizontal Wells In Homogeneous Reservoir
Abstract
By the transient pressure for horizontal well with constant flow rate and Duhamel's principle, this paper presents the method to calculate the transient ...
Determinants of Cerebrovascular Reserve in Patients with Significant Carotid Stenosis
Determinants of Cerebrovascular Reserve in Patients with Significant Carotid Stenosis
AbstractIntroductionIn patients with 70% to 99% diameter carotid artery stenosis cerebral blood flow reserve may be protective of future ischemic cerebral events. Reserve cerebral ...
Characterization of Oil-Water Two-phase Flow Patterns in Vertical Upward Flow Pipes Based on Fractal and Chaotic Time Series Analysis
Characterization of Oil-Water Two-phase Flow Patterns in Vertical Upward Flow Pipes Based on Fractal and Chaotic Time Series Analysis
Abstract
Characterization of oil-water two-phase flow patterns in vertical upward oil-water two-phase flow having an inner diameter 18mm are elucidated based on f...
Experimental and Numerical Analysis of the Flow Field in the Integrated Valve for the Control Rod Hydraulic Drive System
Experimental and Numerical Analysis of the Flow Field in the Integrated Valve for the Control Rod Hydraulic Drive System
Control Rod Hydraulic Drive System (CRHDS) is a new type of built-in control rod drive technology, and the Integrated Valve (IV) is the key control component of it. The pulse water...
THE TWIN DEFICITS IN MALAYSIA: EMPIRICAL EVIDENCE
THE TWIN DEFICITS IN MALAYSIA: EMPIRICAL EVIDENCE
This study examines the twin deficits in Malaysia. The Dickey and Fuller (DF) and Phillips and Perron (PP) unit root test statistics show that all variables examined are non-statio...
Numerical modeling of multiple length scales in thermal transport processes
Numerical modeling of multiple length scales in thermal transport processes
Purpose
– Multiple length and time scales arise in a wide variety of practical and fundamental problems. It is important to obtain accurate and validated numerical ...
Stability Parameter for Two-Phase Vertical Annular Flow
Stability Parameter for Two-Phase Vertical Annular Flow
Abstract
A good theory of stability is essential to the prediction of flow pattern transition; therefore, it is crucial to the design of two-phase flow systems, s...

