Javascript must be enabled to continue!
Unlocking Hopeaphenol: A Potent Ally Against Cardiac Hypertrophy via AMPK Activation
View through CrossRef
Background: Abnormal mitochondrial energy metabolism is a key factor in the development and progression of cardiac hypertrophy. Hopeaphenol (HP), a tetramer of the natural polyphenol resveratrol, exhibits higher biological activity than resveratrol, but its specific role in cardiac hypertrophy and underlying mechanisms remains unclear. Methods: This study explored the protective effect and mechanism of hopeaphenol on cardiac hypertrophy through in vivo and in vitro experiments. In in vivo experiments, transverse aortic constriction (TAC) was used to induce cardiac hypertrophy in mice; HE, Masson, and WGA staining were applied to observe myocardial changes, ELISA was used to detect animal serum indicators, and the Cellular Thermal Shift Assay (CETSA) was conducted to verify the interaction between hopeaphenol and AMPK. In in vitro experiments, angiotensin II (Ang II) was used to induce hypertrophy of HL-1 cardiomyocytes, and the AMPK-specific inhibitor Compound C was employed to confirm the role of the AMPK pathway. Results: In in vivo experiments, TAC-induced cardiac hypertrophy in mice was characterized by left ventricular cavity enlargement and decreased ejection fraction; hopeaphenol treatment significantly improved these cardiac function indices, and HE, Masson, and WGA staining confirmed that hopeaphenol could restore cardiomyocyte morphology and reduce fibrosis. ELISA results of animal serum showed that hopeaphenol could improve metabolic disorders in TAC mice. Furthermore, CETSA confirmed a direct interaction between hopeaphenol and AMPK. In in vitro experiments, hopeaphenol reduced Ang II-induced hypertrophy and apoptosis of HL-1 cardiomyocytes, enhanced mitochondrial membrane potential, and decreased reactive oxygen species (ROS) levels by activating the AMPK pathway; moreover, the AMPK-specific inhibitor Compound C blocked these effects. This suggests that hopeaphenol’s cardioprotective effect is largely mediated by AMPK activation. Conclusions: The protective effect of hopeaphenol on cardiac hypertrophy is highly dependent on the activation of the AMPK signaling pathway, with CETSA and molecular docking supporting direct binding between hopeaphenol and AMPK; this pathway improves mitochondrial dysfunction through AMPK, thereby alleviating heart failure caused by pressure overload. This finding identifies hopeaphenol as a potential candidate for further development in the prevention and treatment of heart failure.
Title: Unlocking Hopeaphenol: A Potent Ally Against Cardiac Hypertrophy via AMPK Activation
Description:
Background: Abnormal mitochondrial energy metabolism is a key factor in the development and progression of cardiac hypertrophy.
Hopeaphenol (HP), a tetramer of the natural polyphenol resveratrol, exhibits higher biological activity than resveratrol, but its specific role in cardiac hypertrophy and underlying mechanisms remains unclear.
Methods: This study explored the protective effect and mechanism of hopeaphenol on cardiac hypertrophy through in vivo and in vitro experiments.
In in vivo experiments, transverse aortic constriction (TAC) was used to induce cardiac hypertrophy in mice; HE, Masson, and WGA staining were applied to observe myocardial changes, ELISA was used to detect animal serum indicators, and the Cellular Thermal Shift Assay (CETSA) was conducted to verify the interaction between hopeaphenol and AMPK.
In in vitro experiments, angiotensin II (Ang II) was used to induce hypertrophy of HL-1 cardiomyocytes, and the AMPK-specific inhibitor Compound C was employed to confirm the role of the AMPK pathway.
Results: In in vivo experiments, TAC-induced cardiac hypertrophy in mice was characterized by left ventricular cavity enlargement and decreased ejection fraction; hopeaphenol treatment significantly improved these cardiac function indices, and HE, Masson, and WGA staining confirmed that hopeaphenol could restore cardiomyocyte morphology and reduce fibrosis.
ELISA results of animal serum showed that hopeaphenol could improve metabolic disorders in TAC mice.
Furthermore, CETSA confirmed a direct interaction between hopeaphenol and AMPK.
In in vitro experiments, hopeaphenol reduced Ang II-induced hypertrophy and apoptosis of HL-1 cardiomyocytes, enhanced mitochondrial membrane potential, and decreased reactive oxygen species (ROS) levels by activating the AMPK pathway; moreover, the AMPK-specific inhibitor Compound C blocked these effects.
This suggests that hopeaphenol’s cardioprotective effect is largely mediated by AMPK activation.
Conclusions: The protective effect of hopeaphenol on cardiac hypertrophy is highly dependent on the activation of the AMPK signaling pathway, with CETSA and molecular docking supporting direct binding between hopeaphenol and AMPK; this pathway improves mitochondrial dysfunction through AMPK, thereby alleviating heart failure caused by pressure overload.
This finding identifies hopeaphenol as a potential candidate for further development in the prevention and treatment of heart failure.
Related Results
Adenosine monophosphate-activated protein kinase activator inhibits activation of fibroblast-like synoviocytes but promotes hyaluronan and proteoglycan link protein 1 secretion
Adenosine monophosphate-activated protein kinase activator inhibits activation of fibroblast-like synoviocytes but promotes hyaluronan and proteoglycan link protein 1 secretion
Abstract
Objectives: To determine whether any correlation exists between disease activity and AMPK levels in rheumatoid arthritis (RA) patients and investigate the effects ...
Loss of AMPK potentiates inflammation by activating the inflammasome after traumatic brain injury in mice
Loss of AMPK potentiates inflammation by activating the inflammasome after traumatic brain injury in mice
AbstractTraumatic brain injury (TBI) is a significant public health concern characterized by a complex cascade of cellular events. TBI induces adenosine monophosphate-activated pro...
Mediator kinase submodule-dependent regulation of cardiac transcription
Mediator kinase submodule-dependent regulation of cardiac transcription
<p>Pathological cardiac remodeling results from myocardial stresses including pressure and volume overload, neurohumoral activation, myocardial infarction, and hypothyroidism...
Bawei Chenxiang Wan Ameliorates Cardiac Hypertrophy by Activating AMPK/PPAR-α Signaling Pathway Improving Energy Metabolism
Bawei Chenxiang Wan Ameliorates Cardiac Hypertrophy by Activating AMPK/PPAR-α Signaling Pathway Improving Energy Metabolism
Bawei Chenxiang Wan (BCW), a well-known traditional Chinese Tibetan medicine formula, is effective for the treatment of acute and chronic cardiovascular diseases. In the present st...
Therapeutic Properties of Polyphenols Affect AMPK Molecular Pathway in Hyperlipidemia
Therapeutic Properties of Polyphenols Affect AMPK Molecular Pathway in Hyperlipidemia
Hyperlipidemia is the fat particles excess in the serum. Hyperlipidemia increases the mortality rate that occurs with other metabolic disorders. Hyperlipidemia is classified into f...
Selective HDAC8 Inhibition Attenuates Isoproterenol-Induced Cardiac Hypertrophy and Fibrosis via p38 MAPK Pathway
Selective HDAC8 Inhibition Attenuates Isoproterenol-Induced Cardiac Hypertrophy and Fibrosis via p38 MAPK Pathway
Histone deacetylase (HDAC) expression and enzymatic activity are dysregulated in cardiovascular diseases. Among Class I HDACs, HDAC2 has been reported to play a key role in cardiac...
Metformin Inhibits BMP9-Induced Proliferation and Differentiation of Human Lung Fibroblasts via AMPK Signaling
Metformin Inhibits BMP9-Induced Proliferation and Differentiation of Human Lung Fibroblasts via AMPK Signaling
Abstract
Adenosine monophosphosphate-activated protein kinase (AMPK) and its activator metformin were found to be involved in the regulation of fibroblast activation and pu...
Calorie Restriction Maintains Mitochondrial Function and Redox Balance Avoiding Lipidomic Reprogramming during Isoproterenol-Induced Cardiac Hypertrophy
Calorie Restriction Maintains Mitochondrial Function and Redox Balance Avoiding Lipidomic Reprogramming during Isoproterenol-Induced Cardiac Hypertrophy
AbstractCardiac hypertrophy induces a metabolic shift, leading to a preferential consumption of glucose (over fatty acids) to support the high energetic demand. Typically, health c...

