Javascript must be enabled to continue!
Black Bass Diversity: Multidisciplinary Science for Conservation
View through CrossRef
<em>Abstract.</em>—Largemouth Bass <em>Micropterus salmoides</em> is typically thought of as a freshwater species, but populations occur in oligohaline portions of estuaries throughout the U.S. Atlantic and Gulf of Mexico coasts, often with popular fisheries. These coastal populations must deal with the physiological stresses associated with salinity variation and may be isolated from inland freshwater populations, increasing the potential for differentiation. To understand factors important to the ecology and management of these coastal populations, we quantified individual- and population-level parameters for Largemouth Bass across a natural salinity gradient in the Mobile-Tensaw River delta in southwestern Alabama during 2002–2009 (including population demographics, feeding ecology, movement, recruitment, and bioenergetics processes). Combining traditional mark–recapture and telemetry techniques with otolith microchemical analyses, we demonstrated that Largemouth Bass of all ages moved very little, even in response to increasing salinity (up to 15‰) in downstream areas. Large individuals were rare in our sampling across both fresh and brackish habitats (only 7 out of 9,530 individuals were >2.27 kg), and fish body condition increased downstream with increasing marine influence. Growth responses for fish across the estuary were more complex, varying with both fish age and salinity. Faster growth was observed in the brackish, downstream areas for fish ≤age 2, while growth of older fish was faster in freshwater upstream sites. Using bioenergetics modeling, we demonstrated that a complex combination of spatial variation in water temperature, prey energetic content, and metabolic cost of salinity was responsible for age-specific spatial variation in growth. Preliminary genetic analysis suggests that these coastal Largemouth Bass may differ genetically from inland fish. Coastal Largemouth Bass populations face a number of potential conservation concerns, and their management will require different approaches compared to their inland counterparts, including different goals and expectations, likely even requiring consideration as unique stocks.
Title: Black Bass Diversity: Multidisciplinary Science for Conservation
Description:
<em>Abstract.
</em>—Largemouth Bass <em>Micropterus salmoides</em> is typically thought of as a freshwater species, but populations occur in oligohaline portions of estuaries throughout the U.
S.
Atlantic and Gulf of Mexico coasts, often with popular fisheries.
These coastal populations must deal with the physiological stresses associated with salinity variation and may be isolated from inland freshwater populations, increasing the potential for differentiation.
To understand factors important to the ecology and management of these coastal populations, we quantified individual- and population-level parameters for Largemouth Bass across a natural salinity gradient in the Mobile-Tensaw River delta in southwestern Alabama during 2002–2009 (including population demographics, feeding ecology, movement, recruitment, and bioenergetics processes).
Combining traditional mark–recapture and telemetry techniques with otolith microchemical analyses, we demonstrated that Largemouth Bass of all ages moved very little, even in response to increasing salinity (up to 15‰) in downstream areas.
Large individuals were rare in our sampling across both fresh and brackish habitats (only 7 out of 9,530 individuals were >2.
27 kg), and fish body condition increased downstream with increasing marine influence.
Growth responses for fish across the estuary were more complex, varying with both fish age and salinity.
Faster growth was observed in the brackish, downstream areas for fish ≤age 2, while growth of older fish was faster in freshwater upstream sites.
Using bioenergetics modeling, we demonstrated that a complex combination of spatial variation in water temperature, prey energetic content, and metabolic cost of salinity was responsible for age-specific spatial variation in growth.
Preliminary genetic analysis suggests that these coastal Largemouth Bass may differ genetically from inland fish.
Coastal Largemouth Bass populations face a number of potential conservation concerns, and their management will require different approaches compared to their inland counterparts, including different goals and expectations, likely even requiring consideration as unique stocks.
Related Results
Black Bass Diversity: Multidisciplinary Science for Conservation
Black Bass Diversity: Multidisciplinary Science for Conservation
<em>Abstract.</em>—The Florida Fish and Wildlife Conservation Commission (FWC) has applied guidelines outlined in its genetic policy for the release of finfishes in Flo...
Black Bass Diversity: Multidisciplinary Science for Conservation
Black Bass Diversity: Multidisciplinary Science for Conservation
<em>Abstract</em>.—Following reports of invasive Spotted Bass <em>Micropterus punctulatus</em> in the Chipola River, Florida, we initiated a microsatellite ...
On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
<span style="font-size:11pt"><span style="background:#f9f9f4"><span style="line-height:normal"><span style="font-family:Calibri,sans-serif"><b><spa...
Black Bass Diversity: Multidisciplinary Science for Conservation
Black Bass Diversity: Multidisciplinary Science for Conservation
<em>Abstract</em>.—While investigating hybridization in Shoal Bass <em>Micropterus cataractae</em> in the Chipola River, Florida, we encountered a distincti...
Black Bass Diversity: Multidisciplinary Science for Conservation
Black Bass Diversity: Multidisciplinary Science for Conservation
<em>Abstract</em>.—Bartram’s Bass (an as yet unnamed species similar to Redeye Bass <em>Micropterus coosae</em>) is endemic to the Savannah drainage of Sout...
Black Bass Diversity: Multidisciplinary Science for Conservation
Black Bass Diversity: Multidisciplinary Science for Conservation
<em>Abstract</em>.—Many of Florida’s natural lakes have experienced degradation of habitat resulting from anthropogenic influences, which can impact Florida Bass <em...
Black Bass Diversity: Multidisciplinary Science for Conservation
Black Bass Diversity: Multidisciplinary Science for Conservation
<em>Abstract</em>.—Long-term studies in Ontario, Canada on Largemouth Bass <em>Micropterus salmoides</em> and Smallmouth Bass <em>M. dolomieu</em&g...
Assessing Size-Dependent Population-Level Effects of Largemouth Bass Tournament Mortality
Assessing Size-Dependent Population-Level Effects of Largemouth Bass Tournament Mortality
Abstract
As black bass Micropterus spp. tournaments continue to grow in popularity, so too must evaluations on the population-level effects of live-release angling e...

