Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Downscaling Climate Information

View through CrossRef
What are the local consequences of a global climate change? This question is important for proper handling of risks associated with weather and climate. It also tacitly assumes that there is a systematic link between conditions taking place on a global scale and local effects. It is the utilization of the dependency of local climate on the global picture that is the backbone of downscaling; however, it is perhaps easiest to explain the concept of downscaling in climate research if we start asking why it is necessary. Global climate models are our best tools for computing future temperature, wind, and precipitation (or other climatological variables), but their limitations do not let them calculate local details for these quantities. It is simply not adequate to interpolate from model results. However, the models are able to predict large-scale features, such as circulation patterns, El Niño Southern Oscillation (ENSO), and the global mean temperature. The local temperature and precipitation are nevertheless related to conditions taking place over a larger surrounding region as well as local geographical features (also true, in general, for variables connected to weather/climate). This, of course, also applies to other weather elements. Downscaling makes use of systematic dependencies between local conditions and large-scale ambient phenomena in addition to including information about the effect of the local geography on the local climate. The application of downscaling can involve several different approaches. This article will discuss various downscaling strategies and methods and will elaborate on their rationale, assumptions, strengths, and weaknesses. One important issue is the presence of spontaneous natural year-to-year variations that are not necessarily directly related to the global state, but are internally generated and superimposed on the long-term climate change. These variations typically involve phenomena such as ENSO, the North Atlantic Oscillation (NAO), and the Southeast Asian monsoon, which are nonlinear and non-deterministic. We cannot predict the exact evolution of non-deterministic natural variations beyond a short time horizon. It is possible nevertheless to estimate probabilities for their future state based, for instance, on projections with models run many times with slightly different set-up, and thereby to get some information about the likelihood of future outcomes. When it comes to downscaling and predicting regional and local climate, it is important to use many global climate model predictions. Another important point is to apply proper validation to make sure the models give skillful predictions. For some downscaling approaches such as regional climate models, there usually is a need for bias adjustment due to model imperfections. This means the downscaling doesn’t get the right answer for the right reason. Some of the explanations for the presence of biases in the results may be different parameterization schemes in the driving global and the nested regional models. A final underlying question is: What can we learn from downscaling? The context for the analysis is important, as downscaling is often used to find answers to some (implicit) question and can be a means of extracting most of the relevant information concerning the local climate. It is also important to include discussions about uncertainty, model skill or shortcomings, model validation, and skill scores.
Title: Downscaling Climate Information
Description:
What are the local consequences of a global climate change? This question is important for proper handling of risks associated with weather and climate.
It also tacitly assumes that there is a systematic link between conditions taking place on a global scale and local effects.
It is the utilization of the dependency of local climate on the global picture that is the backbone of downscaling; however, it is perhaps easiest to explain the concept of downscaling in climate research if we start asking why it is necessary.
Global climate models are our best tools for computing future temperature, wind, and precipitation (or other climatological variables), but their limitations do not let them calculate local details for these quantities.
It is simply not adequate to interpolate from model results.
However, the models are able to predict large-scale features, such as circulation patterns, El Niño Southern Oscillation (ENSO), and the global mean temperature.
The local temperature and precipitation are nevertheless related to conditions taking place over a larger surrounding region as well as local geographical features (also true, in general, for variables connected to weather/climate).
This, of course, also applies to other weather elements.
Downscaling makes use of systematic dependencies between local conditions and large-scale ambient phenomena in addition to including information about the effect of the local geography on the local climate.
The application of downscaling can involve several different approaches.
This article will discuss various downscaling strategies and methods and will elaborate on their rationale, assumptions, strengths, and weaknesses.
One important issue is the presence of spontaneous natural year-to-year variations that are not necessarily directly related to the global state, but are internally generated and superimposed on the long-term climate change.
These variations typically involve phenomena such as ENSO, the North Atlantic Oscillation (NAO), and the Southeast Asian monsoon, which are nonlinear and non-deterministic.
We cannot predict the exact evolution of non-deterministic natural variations beyond a short time horizon.
It is possible nevertheless to estimate probabilities for their future state based, for instance, on projections with models run many times with slightly different set-up, and thereby to get some information about the likelihood of future outcomes.
When it comes to downscaling and predicting regional and local climate, it is important to use many global climate model predictions.
Another important point is to apply proper validation to make sure the models give skillful predictions.
For some downscaling approaches such as regional climate models, there usually is a need for bias adjustment due to model imperfections.
This means the downscaling doesn’t get the right answer for the right reason.
Some of the explanations for the presence of biases in the results may be different parameterization schemes in the driving global and the nested regional models.
A final underlying question is: What can we learn from downscaling? The context for the analysis is important, as downscaling is often used to find answers to some (implicit) question and can be a means of extracting most of the relevant information concerning the local climate.
It is also important to include discussions about uncertainty, model skill or shortcomings, model validation, and skill scores.

Related Results

Statistical Downscaling for Climate Science
Statistical Downscaling for Climate Science
Global climate models are our main tool to generate quantitative climate projections, but these models do not resolve the effects of complex topography, regional scale atmospheric ...
Climate and Culture
Climate and Culture
Climate is, presently, a heatedly discussed topic. Concerns about the environmental, economic, political and social consequences of climate change are of central interest in academ...
Can coarse‐grain patterns in insect atlas data predict local occupancy?
Can coarse‐grain patterns in insect atlas data predict local occupancy?
AbstractAimSpecies atlases provide an economical way to collect data with national coverage, but are typically too coarse‐grained to monitor fine‐grain patterns in rarity, distribu...
A Synergistic Imperative: An Integrated Policy and Education Framework for Navigating the Climate Nexus
A Synergistic Imperative: An Integrated Policy and Education Framework for Navigating the Climate Nexus
Climate change acts as a systemic multiplier of threats, exacerbating interconnected global crises that jeopardize food security, biodiversity, and environmental health. These chal...
Comparison of data-driven methods for downscaling ensemble weather forecasts
Comparison of data-driven methods for downscaling ensemble weather forecasts
Abstract. This study investigates dynamically different data-driven methods, specifically a statistical downscaling model (SDSM), a time lagged feedforward neural network (TLFN), a...
Evaluating the Effectiveness of the European Union’s 2040 Climate Target: Policy Ambitions versus Implementation Challenges
Evaluating the Effectiveness of the European Union’s 2040 Climate Target: Policy Ambitions versus Implementation Challenges
As the level of ambition was increased, in July 2025, the European Commission set out a new binding greenhouse gas (GHG) reduction objective of - 90% by 2040 with respect to 1990, ...
Function-Based Troposphere Tomography Technique for Optimal Downscaling of Precipitation
Function-Based Troposphere Tomography Technique for Optimal Downscaling of Precipitation
Precipitation is an important meteorological indicator that has a direct and significant impact on ecology, agriculture, hydrology, and other vital areas of human health and life. ...

Back to Top