Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

BioElectra-BiLSTM-Dual Attention classifier for optimizing multilabel scientific literature classification

View through CrossRef
Abstract Scientific literature is growing in volume with time. The number of papers published each year by 28 100 journals is 2.5 million. The citation indexes and search engines are used extensively to find these publications. An individual receives many documents in response to a query, but only a few are relevant. The final documents lack structure due to inadequate indexing. Many systems index research papers using keywords instead of subject hierarchies. In the scientific literature classification paradigm, various multilabel classification methods have been proposed based on metadata features. The existing metadata-driven statistical measures use bag of words and traditional embedding techniques, like Word2Vec and BERT, which cannot quantify textual properties effectively. In this paper, we try to solve the limitations of existing classification techniques by unveiling the semantic context of the words using an advanced transformer-based recurrent neural networks (RNN) approach incorporating Dual Attention and layer-wise learning rate to enhance the classification performance. We propose a novel model, BioElectra-BiLSTM-Dual Attention that extracts the semantic features from the titles and abstracts of the research articles using BioElectra-encoder and then BILSTM layer along with Dual Attention label embeddings their correlation matrix and layer-wise learning rate strategy employed for performance enhancement. We evaluated the performance of the proposed model on the multilabel scientific literature LitCovid dataset and the results suggest that it significantly improves the macro-F1 and micro-F1 score as compared to the state-of-the-art baselines (ML-Net, Binary Bert, and LitMCBert).
Title: BioElectra-BiLSTM-Dual Attention classifier for optimizing multilabel scientific literature classification
Description:
Abstract Scientific literature is growing in volume with time.
The number of papers published each year by 28 100 journals is 2.
5 million.
The citation indexes and search engines are used extensively to find these publications.
An individual receives many documents in response to a query, but only a few are relevant.
The final documents lack structure due to inadequate indexing.
Many systems index research papers using keywords instead of subject hierarchies.
In the scientific literature classification paradigm, various multilabel classification methods have been proposed based on metadata features.
The existing metadata-driven statistical measures use bag of words and traditional embedding techniques, like Word2Vec and BERT, which cannot quantify textual properties effectively.
In this paper, we try to solve the limitations of existing classification techniques by unveiling the semantic context of the words using an advanced transformer-based recurrent neural networks (RNN) approach incorporating Dual Attention and layer-wise learning rate to enhance the classification performance.
We propose a novel model, BioElectra-BiLSTM-Dual Attention that extracts the semantic features from the titles and abstracts of the research articles using BioElectra-encoder and then BILSTM layer along with Dual Attention label embeddings their correlation matrix and layer-wise learning rate strategy employed for performance enhancement.
We evaluated the performance of the proposed model on the multilabel scientific literature LitCovid dataset and the results suggest that it significantly improves the macro-F1 and micro-F1 score as compared to the state-of-the-art baselines (ML-Net, Binary Bert, and LitMCBert).

Related Results

Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Abstract The Physical Activity Guidelines for Americans (Guidelines) advises older adults to be as active as possible. Yet, despite the well documented benefits of physical a...
Primerjalna književnost na prelomu tisočletja
Primerjalna književnost na prelomu tisočletja
In a comprehensive and at times critical manner, this volume seeks to shed light on the development of events in Western (i.e., European and North American) comparative literature ...
Multilabel Text Classification in News Articles Using Long-Term Memory with Word2Vec
Multilabel Text Classification in News Articles Using Long-Term Memory with Word2Vec
Multilabel text classification is a task of categorizing text into one or more categories. Like other machine learning, multilabel classification performance is limited to the smal...
Research on AQI prediction of Chengdu-Chongqing economic circle based on CNN-BiLSTM-Selfattention model
Research on AQI prediction of Chengdu-Chongqing economic circle based on CNN-BiLSTM-Selfattention model
Air pollution has emerged as a significant environmental challenge worldwide. The Chengdu- Chongqing economic circle is central to regional development in China. Research into pred...
Remaining useful life prediction for equipment based on RF-BiLSTM
Remaining useful life prediction for equipment based on RF-BiLSTM
The prediction technology of remaining useful life has received a lot attention to ensure the reliability and stability of complex mechanical equipment. Due to the large-scale, non...
Hyperband-Optimized CNN-BiLSTM with Attention Mechanism for Corporate Financial Distress Prediction
Hyperband-Optimized CNN-BiLSTM with Attention Mechanism for Corporate Financial Distress Prediction
In the context of new quality productive forces, enterprises must leverage technological innovation and intelligent management to enhance financial risk resilience. This article pr...
Face expression recognition based on NGO-BILSTM model
Face expression recognition based on NGO-BILSTM model
IntroductionFacial expression recognition has always been a hot topic in computer vision and artificial intelligence. In recent years, deep learning models have achieved good resul...
Daily Runoff Prediction in Xijiang River Basin Based on FOA‐TCN‐BiLSTM Model
Daily Runoff Prediction in Xijiang River Basin Based on FOA‐TCN‐BiLSTM Model
ABSTRACTAccurate and reliable daily runoff forecasting plays a vital role in water resource management, flood warning and operational scheduling. However, runoff prediction is chal...

Back to Top