Javascript must be enabled to continue!
Thermal Transport of Graphene Sheets with Fractal Defects
View through CrossRef
Graphene combined with fractal structures would probably be a promising candidate design of an antenna for a wireless communication system. However, the thermal transport properties of fractal graphene, which would influence the properties of wireless communication systems, are unclear. In this paper, the thermal transport properties of graphene with a Sierpinski fractal structure were investigated via the reverse non-equilibrium molecular dynamics simulation method. Simulation results indicated that the thermal conductivity of graphene with fractal defects decreased from 157.62 to 19.60 (W m−1 K−1) as the fractal level increased. Furthermore, visual display and statistical results of fractal graphene atomic heat flux revealed that with fractal levels increasing, the real heat flux paths twisted, and the angle distributions of atomic heat flux vectors enlarged from about (−30°, 30°) to about (−45°, 45°). In fact, the fractal structures decreased the real heat flow areas and extended the real heat flux paths, and enhanced the phonon scattering in the defect edges of the fractal graphene. Analyses of fractal graphene thermal transport characters in our work indicated that the heat transfer properties of fractal graphene dropped greatly as fractal levels increased, which would provide effective guidance to the design of antennae based on fractal graphene.
Title: Thermal Transport of Graphene Sheets with Fractal Defects
Description:
Graphene combined with fractal structures would probably be a promising candidate design of an antenna for a wireless communication system.
However, the thermal transport properties of fractal graphene, which would influence the properties of wireless communication systems, are unclear.
In this paper, the thermal transport properties of graphene with a Sierpinski fractal structure were investigated via the reverse non-equilibrium molecular dynamics simulation method.
Simulation results indicated that the thermal conductivity of graphene with fractal defects decreased from 157.
62 to 19.
60 (W m−1 K−1) as the fractal level increased.
Furthermore, visual display and statistical results of fractal graphene atomic heat flux revealed that with fractal levels increasing, the real heat flux paths twisted, and the angle distributions of atomic heat flux vectors enlarged from about (−30°, 30°) to about (−45°, 45°).
In fact, the fractal structures decreased the real heat flow areas and extended the real heat flux paths, and enhanced the phonon scattering in the defect edges of the fractal graphene.
Analyses of fractal graphene thermal transport characters in our work indicated that the heat transfer properties of fractal graphene dropped greatly as fractal levels increased, which would provide effective guidance to the design of antennae based on fractal graphene.
Related Results
Interfacial thermal conductance of gallium nitride/graphene/diamond heterostructure based on molecular dynamics simulation
Interfacial thermal conductance of gallium nitride/graphene/diamond heterostructure based on molecular dynamics simulation
<sec>Gallium nitride chips are widely used in high-frequency and high-power devices. However, thermal management is a serious challenge for gallium nitride devices. To improv...
Preparation of Graphene Fibers
Preparation of Graphene Fibers
Graphene owns intriguing properties in electronic, thermal, and mechanic with unique two-dimension (2D) monolayer structure. The new member of carbon family has not only attracted ...
Dynamic Rigid Fractal Spacetime Manifold Theory
Dynamic Rigid Fractal Spacetime Manifold Theory
This paper proposes an innovative framework, the Dynamic Rigid Fractal Spacetime Manifold Theory (DRFSMT), which integrates fractal and noncommutative algebra to provide a unified ...
In-Situ Hydrogen-Induced Defects on the Single Layer CVD Growth Graphene
In-Situ Hydrogen-Induced Defects on the Single Layer CVD Growth Graphene
In this paper we present in-situ hydrogen-induced defects on the single layer CVD growth graphene sheets with reactive terminated edges and holes within the graphene matrix. The sa...
Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors
Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors
Graphene, a 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, and high mechanical s...
Exploring defects and induced magnetism in epitaxial graphene films
Exploring defects and induced magnetism in epitaxial graphene films
Graphene has been demonstrated to have unique properties not only in its virgin state but also by altering its environment through rotations in bilayer graphene, doping, and creati...
Acoustics of Fractal Porous Material and Fractional Calculus
Acoustics of Fractal Porous Material and Fractional Calculus
In this paper, we present a fractal (self-similar) model of acoustic propagation in a porous material with a rigid structure. The fractal medium is modeled as a continuous medium o...
(Invited) Excellent Wetting Behavior of Yttria on 2D Materials
(Invited) Excellent Wetting Behavior of Yttria on 2D Materials
A high quality yttrium oxide (yttria, Y2O3) dielectric has been grown on different carbon derivatives materials (carbon nanotubes, exfoliated graphene, chemical vapor deposition gr...

