Javascript must be enabled to continue!
Dynamic Tangential Contact Stiffness and Damping Model of the Solid–Liquid Interface
View through CrossRef
In order to establish the tangential contact stiffness and damping model of the solid–liquid interface by tangential exciting vibration force under mixed lubrication, the finite difference method was firstly used to solve the average flow equation considering the effect of roughness on the lubrication effect, and the bearing capacity, shear force, and friction coefficient of the oil film were obtained, and thereby the dynamic tangential contact stiffness and damping of the oil film under tangential harmonic excitation were calculated. Then, according to the relationship between the normal deformation and the load of the solid contact microconvex body in the elastic/elastic–plastic/plastic deformation stage, integrating the tangential stick–slip theory, considering the effect of fluid lubrication on the solid contact friction coefficient, and tangential dynamic excitation, the tangential contact stiffness and damping of the microconvex body in three deformation stages were calculated. Furthermore, the dynamic tangential contact stiffness and damping of the solid–liquid interface were obtained by summing the solid surface contact part and the solid–liquid contact part in parallel according to the assumption of microconvex Gaussian distribution. Finally, through simulation analysis and experiments, the variation of the tangential dynamic contact stiffness and damping of the solid–liquid interface with normal load, tangential exciting frequency, and displacement amplitude was revealed and verified.
Title: Dynamic Tangential Contact Stiffness and Damping Model of the Solid–Liquid Interface
Description:
In order to establish the tangential contact stiffness and damping model of the solid–liquid interface by tangential exciting vibration force under mixed lubrication, the finite difference method was firstly used to solve the average flow equation considering the effect of roughness on the lubrication effect, and the bearing capacity, shear force, and friction coefficient of the oil film were obtained, and thereby the dynamic tangential contact stiffness and damping of the oil film under tangential harmonic excitation were calculated.
Then, according to the relationship between the normal deformation and the load of the solid contact microconvex body in the elastic/elastic–plastic/plastic deformation stage, integrating the tangential stick–slip theory, considering the effect of fluid lubrication on the solid contact friction coefficient, and tangential dynamic excitation, the tangential contact stiffness and damping of the microconvex body in three deformation stages were calculated.
Furthermore, the dynamic tangential contact stiffness and damping of the solid–liquid interface were obtained by summing the solid surface contact part and the solid–liquid contact part in parallel according to the assumption of microconvex Gaussian distribution.
Finally, through simulation analysis and experiments, the variation of the tangential dynamic contact stiffness and damping of the solid–liquid interface with normal load, tangential exciting frequency, and displacement amplitude was revealed and verified.
Related Results
Pediatric Scar Management Using Tangential Excision With Intralesional Injections and Laser-Assisted 5-Fluorouracil Delivery
Pediatric Scar Management Using Tangential Excision With Intralesional Injections and Laser-Assisted 5-Fluorouracil Delivery
Background
Pediatric hypertrophic and keloid scars have traditionally been treated via intralesional steroid injections. The advent of modalities such as 5-fluorouracil...
Enhancing vibration control in stay cables: a modified damping formulation with NS-HDR damper
Enhancing vibration control in stay cables: a modified damping formulation with NS-HDR damper
Cables in cable-stayed bridges have low intrinsic damping, and dampers are often used as a countermeasure for cable vibration control. This paper presents an innovative asymptotic ...
Fabrication of Ruthenium-Based Cathode Material/Solid Electrolyte Composites
Fabrication of Ruthenium-Based Cathode Material/Solid Electrolyte Composites
Introduction
Oxide-based all-solid-state batteries (ASSBs) are considered safe due to their chemical stability and are attracting attention as a pow...
Zero damping effect of magnetic bilayer in microwave resonant cavity
Zero damping effect of magnetic bilayer in microwave resonant cavity
Experimental and theoretical studies have shown that a single magnon mode and cavity photon can be coupled coherently and dissipatively, with the interference between two types of ...
Research on contact stiffness of tenon jointed turbine bladed disk under time-varying load
Research on contact stiffness of tenon jointed turbine bladed disk under time-varying load
Abstract
Tenon-jointed turbine blades will be impacted by airflow and centrifugal force during the high-speed rotation of the engine. The surface contact stiffness o...
Contact behaviors of steel‐formed concrete and autoclaved aerated concrete interfaces in prefabricated structures
Contact behaviors of steel‐formed concrete and autoclaved aerated concrete interfaces in prefabricated structures
AbstractAutoclaved aerated concrete (AAC) wall panels, valued for their lightweight properties, low carbon footprint, and ease of processing, are commonly combined with precast con...
High-temperature damping capacity of fly ash cenosphere/AZ91D Mg alloy composites
High-temperature damping capacity of fly ash cenosphere/AZ91D Mg alloy composites
Abstract
In this study, fly ash cenospheres were added to semisolid AZ91D Mg alloy to prepare fly ash cenosphere/AZ91D (FAC/AZ91D) composites by means of compo-casti...
Capillarity processes through the solar system
Capillarity processes through the solar system
In everyday life, the manifestations of capillarity are countless, going from liquids ascension in fibers to the dynamics of bubbles and droplets. On a scientific point of view, hy...

