Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Amazonian Tectonic Evolution of Ceraunius and Tractus Fossae, Mars, and Implications for Local Magmatic Sources

View through CrossRef
The heavily faulted Martian terrains of Ceraunius Fossae and Tractus Fossae, south of the Alba Mons volcano, have previously only been considered as parts of larger tectonic studies of Alba Mons, and the complexity of the faulting remains consequently unclear. As these terrains are in midst of the large Tharsis’ volcanoes, the study of their surface deformation has the potential to help unravel the volcano-tectonic deformation history associated with the growth of Tharsis, as well as decipher details of the responsible magma-tectonic processes. In this study, we distinguish between faults and collapse structures based on image and topographic evidence of pit-crater chains. We mapped ~12,000 faults, which we grouped into 3 distinct fault groups based on orientation, morphology, and relative ages. These show a temporal evolution in the mapped fault orientations from NE to NS to NW, with associated perpendicular stress orientations. Collapse features were also mapped and categorized into 4 different groups: pit-crater chains, catenae, u-shaped troughs and chasma. Examining the 4 collapse structures reveals that they are likely 4 different steps in the erosional evolution of pit-crater chains. Together this revealed a structural history heavily influenced by both local (radial to Alba Mons, Pavonis Mons and Ascraeus Mons) and regional (Tharsis radial) lateral diking, and vertical diking from a proposed Ceraunius Fossae centred magma source. This, along with an updated crater size-frequency distribution analysis of the unit ages, reveals a highly active tectonic and magmatic environment south of Alba Mons, in the Late Amazonian.
Title: Amazonian Tectonic Evolution of Ceraunius and Tractus Fossae, Mars, and Implications for Local Magmatic Sources
Description:
The heavily faulted Martian terrains of Ceraunius Fossae and Tractus Fossae, south of the Alba Mons volcano, have previously only been considered as parts of larger tectonic studies of Alba Mons, and the complexity of the faulting remains consequently unclear.
As these terrains are in midst of the large Tharsis’ volcanoes, the study of their surface deformation has the potential to help unravel the volcano-tectonic deformation history associated with the growth of Tharsis, as well as decipher details of the responsible magma-tectonic processes.
In this study, we distinguish between faults and collapse structures based on image and topographic evidence of pit-crater chains.
We mapped ~12,000 faults, which we grouped into 3 distinct fault groups based on orientation, morphology, and relative ages.
These show a temporal evolution in the mapped fault orientations from NE to NS to NW, with associated perpendicular stress orientations.
Collapse features were also mapped and categorized into 4 different groups: pit-crater chains, catenae, u-shaped troughs and chasma.
Examining the 4 collapse structures reveals that they are likely 4 different steps in the erosional evolution of pit-crater chains.
Together this revealed a structural history heavily influenced by both local (radial to Alba Mons, Pavonis Mons and Ascraeus Mons) and regional (Tharsis radial) lateral diking, and vertical diking from a proposed Ceraunius Fossae centred magma source.
This, along with an updated crater size-frequency distribution analysis of the unit ages, reveals a highly active tectonic and magmatic environment south of Alba Mons, in the Late Amazonian.

Related Results

MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...
Homogeneous nucleation on Mars. An unexpected process that deciphers mysterious elongated clouds
Homogeneous nucleation on Mars. An unexpected process that deciphers mysterious elongated clouds
Homogeneous nucleation has not been considered a possibility in cloud formation processes in the atmosphere of Mars (e.g. Clancy et al., 2017), since Määttänen et al. (2005) made a...
Temporal and Spatial Correlation Analysis of Mineralization during Magmatic Hydrothermal Activity Evolution
Temporal and Spatial Correlation Analysis of Mineralization during Magmatic Hydrothermal Activity Evolution
The emplacement and crystallization of magmatic rocks are the main ways of forming the crust, which have a decisive influence on the geochemical environment and mineralization. In ...
Concept of Operations for Future Mars Helicopters: Accessing Distant Targets with a Pathfinder-Style EDL System
Concept of Operations for Future Mars Helicopters: Accessing Distant Targets with a Pathfinder-Style EDL System
. IntroductionThe highly successful campaign of the Ingenuity Mars helicopter [1] proved the feasibility of powered, controlled flight on Mars and has motivated the development of ...
European Space Agency Mars Exploration Future Planning
European Space Agency Mars Exploration Future Planning
Introduction:  Following the finalisation of ESA’s European Explore2040 strategy [1], which describes the Agency’s vision for establishing an uninterru...
Epistemologia dos olhares amazônicos
Epistemologia dos olhares amazônicos
RESUMO O presente estudo representa um esforço destes pesquisadores na construção de olhares sobre as epistemologias amazônicas como ensaio de interpretação dos saberes amazônicos....
Multiple superposed inverted landforms on Mars
Multiple superposed inverted landforms on Mars
<p><strong>Introduction:</strong> Inverted landforms are positive relief and well-preserved features; typically, their formation instigate...

Back to Top