Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Polarization Study of Gamma-ray Binary Systems

View through CrossRef
Abstract The polarization of X-ray emission is a unique tool used to investigate the magnetic field structure around astrophysical objects. In this paper, we study the linear polarization of X-ray emissions from gamma-ray binary systems based on pulsar scenarios. We discuss synchrotron emission from pulsar wind particles accelerated by a standing shock. We explore three kinds of axisymmetric magnetic field structures: (i) toroidal magnetic fields, (ii) poloidal magnetic fields, and (iii) tangled magnetic fields. Because of the axisymmetric structure, the polarization angle of integrated emission is oriented along or perpendicular to the shock-cone axis projected on the sky and swings around 360° in one orbit. For the toroidal case, the polarization angle is always directed along the shock-cone axis and smoothly changes along the orbital phase. For the poloidal/tangled magnetic field, the direction of the polarization angle depends on the system parameters and orbital phase. In one orbit, the polarization degree for the toroidal case can reach the maximum value of the synchrotron radiation (∼70%), while the maximum polarization degree for poloidal/tangled field cases is several 10%. We apply our model to bright gamma-ray binary LS 5039 and make predictions for future observations. With the expected sensitivity of the Imaging X-ray Polarimetry Explorer, linear polarization can be detected by an observation of several days if the magnetic field is dominated by the toroidal magnetic field. If the magnetic field is dominated by the poloidal/tangled field, significant detection is expected with an observation longer than 10 days.
Title: Polarization Study of Gamma-ray Binary Systems
Description:
Abstract The polarization of X-ray emission is a unique tool used to investigate the magnetic field structure around astrophysical objects.
In this paper, we study the linear polarization of X-ray emissions from gamma-ray binary systems based on pulsar scenarios.
We discuss synchrotron emission from pulsar wind particles accelerated by a standing shock.
We explore three kinds of axisymmetric magnetic field structures: (i) toroidal magnetic fields, (ii) poloidal magnetic fields, and (iii) tangled magnetic fields.
Because of the axisymmetric structure, the polarization angle of integrated emission is oriented along or perpendicular to the shock-cone axis projected on the sky and swings around 360° in one orbit.
For the toroidal case, the polarization angle is always directed along the shock-cone axis and smoothly changes along the orbital phase.
For the poloidal/tangled magnetic field, the direction of the polarization angle depends on the system parameters and orbital phase.
In one orbit, the polarization degree for the toroidal case can reach the maximum value of the synchrotron radiation (∼70%), while the maximum polarization degree for poloidal/tangled field cases is several 10%.
We apply our model to bright gamma-ray binary LS 5039 and make predictions for future observations.
With the expected sensitivity of the Imaging X-ray Polarimetry Explorer, linear polarization can be detected by an observation of several days if the magnetic field is dominated by the toroidal magnetic field.
If the magnetic field is dominated by the poloidal/tangled field, significant detection is expected with an observation longer than 10 days.

Related Results

L᾽«unilinguisme» officiel de Constantinople byzantine (VIIe-XIIe s.)
L᾽«unilinguisme» officiel de Constantinople byzantine (VIIe-XIIe s.)
&nbsp; <p>&Nu;ί&kappa;&omicron;&sigmaf; &Omicron;&iota;&kappa;&omicron;&nu;&omicron;&mu;ί&delta;&eta;&sigmaf;</...
North Syrian Mortaria and Other Late Roman Personal and Utility Objects Bearing Inscriptions of Good Luck
North Syrian Mortaria and Other Late Roman Personal and Utility Objects Bearing Inscriptions of Good Luck
<span style="font-size: 11pt; color: black; font-family: 'Times New Roman','serif'">&Pi;&Eta;&Lambda;&Iota;&Nu;&Alpha; &Iota;&Gamma;&Delta...
Functional comparison of Fc epsilon RI, Fc gamma RII, and Fc gamma RIII in mast cells
Functional comparison of Fc epsilon RI, Fc gamma RII, and Fc gamma RIII in mast cells
Abstract The cellular responses initiated by cross-linking rodent Fc gamma RII-b1, Fc gamma RII-b2, Fc gamma RIII, and Fc epsilon RI in mast cells were compared. Ind...
Comparison of linear and circular polarization in foggy environments at UV-NIR wavelengths
Comparison of linear and circular polarization in foggy environments at UV-NIR wavelengths
This paper investigates the polarization persistence of linear polarization and circular polarization in foggy environments from ultraviolet (UV) to near-infrared (NIR). Using pola...
Characterization of the family of dimers associated with Fc receptors (Fc epsilon RI and Fc gamma RIII).
Characterization of the family of dimers associated with Fc receptors (Fc epsilon RI and Fc gamma RIII).
Abstract The receptor for IgE (Fc epsilon RI) is a multimeric complex containing one alpha chain, one beta chain with four transmembrane domains and one homodimer of...
Study on multi-beam superposition using complementary polarization control plates
Study on multi-beam superposition using complementary polarization control plates
In order to meet the requirement for uniform irradiation on the target in inertial confinement fusion, a schemie is proposed for achieving the depolarized superposition of multi-be...
Gamma-protocadherin Cis- and Trans-interactions regulate the development of dendrite arbors and synapses in the cerebral cortex
Gamma-protocadherin Cis- and Trans-interactions regulate the development of dendrite arbors and synapses in the cerebral cortex
<p>The alpha-, beta-, and gamma-Protocadherins (gamma-Pcdhs) are cadherin superfamily adhesion molecules encoded by clustered gene families. The 22 gamma-Pcdhs are combinator...

Back to Top