Javascript must be enabled to continue!
Decoding spatiotemporal pattern of flood episodes and climatic variability in western and eastern catchments of the Southern Alps, New Zealand.
View through CrossRef
In the Northern Hemisphere, the PAGES Floods Working Group database documents 345 paleoflood studies, while in the humid temperate zones of the Southern Hemisphere, studies are limited due to differences in i) continent and ocean distribution, ii) population density, iii) settlement history, and iv) documentary sources. Assessing Southern Hemisphere flood trends becomes a significant goal in the context of Global Change. Our study focuses on spatial-temporal reconstruction and climatic characterization of floods in New Zealand's southern regions (43° – 47°S) from 1862 to 2020 CE.Due to limitations in generating continuous flood series from the number of flood fatalities or economic losses over the past 160 years, we opted to reconstruct regional indices of historical flood severity and spatial incidence. To accomplish this, we compiled three regional synthetic flood databases from the New Zealand National Institute of Water and Atmospheric Research's catalogue of historical meteorological events. The flood severity matrix integrates various parameters, including numbers of fatalities, witness descriptions of peak flows, flooded areas, geomorphological impacts, losses of livestock, properties, and infrastructure, as well as information on evacuation and mitigation measures. We reanalyzed information from more than 8,000 data entries and reviewed 903 impact points to characterize a total of 295 floods. Additionally, the influence of climatic variability, as inferred from the Principal EOF of the Sea Level Pressure monthly anomalies, was reconstructed using data from the 20th Century Reanalysis Project.The three flood damage series, comprising 295 floods, reveal several synchronous flood pulses around the years 1878, 1905, 1913, 1957, 1968, 1978, 1999, and 2008 CE. However, other flood pulses are out of phase due to different physiographic settings, catchment size, location on the western (West Coast) or eastern slope of the Southern Alps (Otago and Southland), and exposure to oceans and paths of weather systems.Notably, in the West Coast Region with very high relief and steep slopes, the most severe floods occurred in spring and summer. Seven out of ten flood pulses recorded from 1862 to 2020 correlate with positive Southern Annular Mode, higher sea surface temperatures (SST), blocking weather types in summer, and lows over the Tasman Sea, resulting in increased humid airflows from the north and northwest.The larger Otago catchments, comprising humid alpine relief in the northwest, dry basins and ranges in the central area, and humid lowlands in the east, experienced the maximum number of severe floods during summer. Ten out of fourteen pulses occurred during the positive phase of the Southern Oscillation Index (La Niña), characterized by higher SST, blocking types in summer and autumn, and an increase in northeasterly winds.In contrast, the landforms of Southland, featuring lower ridges, gentler slopes, and large floodplains, saw floods primarily in summer and autumn. Ten out of fourteen pulses in this region correlated with negative phases of the Southern Oscillation Index (El Niño), characterized by lower sea surface temperatures, more zonal flow, and troughs with stronger and more frequent winds from the west in summer and the south in winter.
Title: Decoding spatiotemporal pattern of flood episodes and climatic variability in western and eastern catchments of the Southern Alps, New Zealand.
Description:
In the Northern Hemisphere, the PAGES Floods Working Group database documents 345 paleoflood studies, while in the humid temperate zones of the Southern Hemisphere, studies are limited due to differences in i) continent and ocean distribution, ii) population density, iii) settlement history, and iv) documentary sources.
Assessing Southern Hemisphere flood trends becomes a significant goal in the context of Global Change.
Our study focuses on spatial-temporal reconstruction and climatic characterization of floods in New Zealand's southern regions (43° – 47°S) from 1862 to 2020 CE.
Due to limitations in generating continuous flood series from the number of flood fatalities or economic losses over the past 160 years, we opted to reconstruct regional indices of historical flood severity and spatial incidence.
To accomplish this, we compiled three regional synthetic flood databases from the New Zealand National Institute of Water and Atmospheric Research's catalogue of historical meteorological events.
The flood severity matrix integrates various parameters, including numbers of fatalities, witness descriptions of peak flows, flooded areas, geomorphological impacts, losses of livestock, properties, and infrastructure, as well as information on evacuation and mitigation measures.
We reanalyzed information from more than 8,000 data entries and reviewed 903 impact points to characterize a total of 295 floods.
Additionally, the influence of climatic variability, as inferred from the Principal EOF of the Sea Level Pressure monthly anomalies, was reconstructed using data from the 20th Century Reanalysis Project.
The three flood damage series, comprising 295 floods, reveal several synchronous flood pulses around the years 1878, 1905, 1913, 1957, 1968, 1978, 1999, and 2008 CE.
However, other flood pulses are out of phase due to different physiographic settings, catchment size, location on the western (West Coast) or eastern slope of the Southern Alps (Otago and Southland), and exposure to oceans and paths of weather systems.
Notably, in the West Coast Region with very high relief and steep slopes, the most severe floods occurred in spring and summer.
Seven out of ten flood pulses recorded from 1862 to 2020 correlate with positive Southern Annular Mode, higher sea surface temperatures (SST), blocking weather types in summer, and lows over the Tasman Sea, resulting in increased humid airflows from the north and northwest.
The larger Otago catchments, comprising humid alpine relief in the northwest, dry basins and ranges in the central area, and humid lowlands in the east, experienced the maximum number of severe floods during summer.
Ten out of fourteen pulses occurred during the positive phase of the Southern Oscillation Index (La Niña), characterized by higher SST, blocking types in summer and autumn, and an increase in northeasterly winds.
In contrast, the landforms of Southland, featuring lower ridges, gentler slopes, and large floodplains, saw floods primarily in summer and autumn.
Ten out of fourteen pulses in this region correlated with negative phases of the Southern Oscillation Index (El Niño), characterized by lower sea surface temperatures, more zonal flow, and troughs with stronger and more frequent winds from the west in summer and the south in winter.
Related Results
Sedimentary records imply that continent-continent collision occurred later in the Eastern than in the Western Alps.
Sedimentary records imply that continent-continent collision occurred later in the Eastern than in the Western Alps.
The change from a deep-marine, underfilled Flysch to a terrestrial and/or shallow-marine, overfilled Molasse stage of basin evolution is probably one of the major steps in the evol...
Relationships between subduction tectonics beneath the Alps and the source-to-sink sedimentary pathways in the Molasse basin
Relationships between subduction tectonics beneath the Alps and the source-to-sink sedimentary pathways in the Molasse basin
The stratigraphic development of foreland basins has mainly been related to surface loading in the adjacent orogens, whereas the controls of slab loads on these basins have receive...
Catchment classification by runoff behaviour with self-organizing maps (SOM)
Catchment classification by runoff behaviour with self-organizing maps (SOM)
Abstract. Catchments show a wide range of response behaviour, even if they are adjacent. For many purposes it is necessary to characterise and classify them, e.g. for regionalisati...
Improving Decodability of Polar Codes by Adding Noise
Improving Decodability of Polar Codes by Adding Noise
This paper presents an online perturbed and directed neural-evolutionary (Online-PDNE) decoding algorithm for polar codes, in which the perturbation noise and online directed neuro...
Zero to hero
Zero to hero
Western images of Japan tell a seemingly incongruous story of love, sex and marriage – one full of contradictions and conflicting moral codes. We sometimes hear intriguing stories ...
Assessment of Flood Risk Analysis in Selangor
Assessment of Flood Risk Analysis in Selangor
Flood events occur every year especially during the monsoon season. Although its consequences are not as disastrous as other natural disasters such as earthquakes and tornado storm...
Analyzing the Evolution of Droughts and Floods During the Flood Season in the Yangtze River Basin and the Three Gorges Reservoir Area from 1470 to 2022
Analyzing the Evolution of Droughts and Floods During the Flood Season in the Yangtze River Basin and the Three Gorges Reservoir Area from 1470 to 2022
Abstract
As an important economic region in China, The Yangtze River economic belt encountered a historically rare successive drought in 2022. Here even appeared a phenomen...
Physiographic controls on fractions of new water in 12 nested catchments
Physiographic controls on fractions of new water in 12 nested catchments
In the context of global change, the characterization and quantification of the “changing pulse of rivers” is a pressing challenge. Over the past decades, rapid...

