Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Hyperspectral Unmixing with Robust Collaborative Sparse Regression

View through CrossRef
Recently, sparse unmixing (SU) of hyperspectral data has received particular attention for analyzing remote sensing images. However, most SU methods are based on the commonly admitted linear mixing model (LMM), which ignores the possible nonlinear effects (i.e., nonlinearity). In this paper, we propose a new method named robust collaborative sparse regression (RCSR) based on the robust LMM (rLMM) for hyperspectral unmixing. The rLMM takes the nonlinearity into consideration, and the nonlinearity is merely treated as outlier, which has the underlying sparse property. The RCSR simultaneously takes the collaborative sparse property of the abundance and sparsely distributed additive property of the outlier into consideration, which can be formed as a robust joint sparse regression problem. The inexact augmented Lagrangian method (IALM) is used to optimize the proposed RCSR. The qualitative and quantitative experiments on synthetic datasets and real hyperspectral images demonstrate that the proposed RCSR is efficient for solving the hyperspectral SU problem compared with the other four state-of-the-art algorithms.
Title: Hyperspectral Unmixing with Robust Collaborative Sparse Regression
Description:
Recently, sparse unmixing (SU) of hyperspectral data has received particular attention for analyzing remote sensing images.
However, most SU methods are based on the commonly admitted linear mixing model (LMM), which ignores the possible nonlinear effects (i.
e.
, nonlinearity).
In this paper, we propose a new method named robust collaborative sparse regression (RCSR) based on the robust LMM (rLMM) for hyperspectral unmixing.
The rLMM takes the nonlinearity into consideration, and the nonlinearity is merely treated as outlier, which has the underlying sparse property.
The RCSR simultaneously takes the collaborative sparse property of the abundance and sparsely distributed additive property of the outlier into consideration, which can be formed as a robust joint sparse regression problem.
The inexact augmented Lagrangian method (IALM) is used to optimize the proposed RCSR.
The qualitative and quantitative experiments on synthetic datasets and real hyperspectral images demonstrate that the proposed RCSR is efficient for solving the hyperspectral SU problem compared with the other four state-of-the-art algorithms.

Related Results

Mapping Mineralogical Distributions on Mars with Unsupervised Machine Learning
Mapping Mineralogical Distributions on Mars with Unsupervised Machine Learning
Abstract Knowledge of the constituents of the Martian surface and their distributions over the planet informs us about Mars’ geomorphological formation and evolutionary h...
Sparse Unmixing of Hyperspectral Data with Noise Level Estimation
Sparse Unmixing of Hyperspectral Data with Noise Level Estimation
Recently, sparse unmixing has received particular attention in the analysis of hyperspectral images (HSIs). However, traditional sparse unmixing ignores the different noise levels ...
Superpixel Weighted Low-rank and Sparse Approximation for Hyperspectral Unmixing
Superpixel Weighted Low-rank and Sparse Approximation for Hyperspectral Unmixing
We propose a superpixel weighted low-rank and sparse unmixing (SWLRSU) method for sparse unmixing. The proposed method consists of two steps. In the first step, we segment hyperspe...
Hyperspectral image analysis using a simultaneous Denoising and Intrinsic Order Selection (DIOS) approach
Hyperspectral image analysis using a simultaneous Denoising and Intrinsic Order Selection (DIOS) approach
Recent hyperspectral applications demand for higher accuracy and speed. This thesis develops a hyperspectral application analysis solution to address challenges in the different st...
Hyperspectral image analysis using a simultaneous Denoising and Intrinsic Order Selection (DIOS) approach
Hyperspectral image analysis using a simultaneous Denoising and Intrinsic Order Selection (DIOS) approach
Recent hyperspectral applications demand for higher accuracy and speed. This thesis develops a hyperspectral application analysis solution to address challenges in the different st...
Learned Hyperspectral Compression Using a Student’s T Hyperprior
Learned Hyperspectral Compression Using a Student’s T Hyperprior
Hyperspectral compression is one of the most common techniques in hyperspectral image processing. Most recent learned image compression methods have exhibited excellent rate-distor...
Current Advances in Hyperspectral Face Recognition
Current Advances in Hyperspectral Face Recognition
Hyperspectral imaging systems are well established, for satellite, remote sensing and geosciences applications. Recently, the reduction in the cost of hyperspectral sensors and inc...
Current Advances in Hyperspectral Face Recognition
Current Advances in Hyperspectral Face Recognition
Hyperspectral imaging systems are well established, for satellite, remote sensing and geosciences applications. Recently, the reduction in the cost of hyperspectral sensors and inc...

Back to Top