Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Solution additives promoting the onset of MgCO3 nucleation

View through CrossRef
Formed via aqueous carbonation of Mg2+ ions, the crystallization of magnesite (MgCO3) is a promising carbon capture and reuse technology, albeit limited by the slow precipitation of MgCO3. Although magnesite is naturally abundant, forming at low temperature conditions, its production is an energy-intensive process due to the temperatures required to prevent the formation of hydrated phases. The principle difficulty arises from the very strong Mg2+···H2O interaction, raising barriers to dehydration. Using atomistic simulations, we have investigated the influence of thirty additive anions (Xn–, n = 1–3), ranging from simple halides to more complex molecules, on the first two steps of MgCO3 aggregation from solution: Mg2+ dehydration and Mg2+∙∙∙CO32– pairing. We have computed the thermodynamic stability of solvent shared ion pairs, Mg2+···H2O···Xn–, and contact ion pairs, Mg2+···Xn–, with Mg2+ to reveal the propensity of solution additives to inhibit Mg2+∙∙∙CO32– formation. We have determined the stabilization of undercoordinated hydrated Mg2+ states with a vacant coordination site to which CO32– can bind, subsequently initiating MgCO3 nucleation or Mg2+ incorporation into the crystal lattice. Extensive molecular dynamics simulations of electrolyte solutions containing Na2CO3 with different sources of Mg2+, MgCl2, MgSO4 and Mg(CH3COO)2, further shows that the degree of dehydration of Mg2+ and the structure of prenucleation MgCO3 clusters changes depending on the type counterion. Through a fundamental understanding of the role of solution additives in the mechanism of Mg2+ dehydration, our computational study can rationalize previously reported experimental observation of the effect of solvation environments on the growth of magnesite. This understanding may contribute to identifying solution composition conditions that could promote the low-temperature CO2 conversion into MgCO3.
Title: Solution additives promoting the onset of MgCO3 nucleation
Description:
Formed via aqueous carbonation of Mg2+ ions, the crystallization of magnesite (MgCO3) is a promising carbon capture and reuse technology, albeit limited by the slow precipitation of MgCO3.
Although magnesite is naturally abundant, forming at low temperature conditions, its production is an energy-intensive process due to the temperatures required to prevent the formation of hydrated phases.
The principle difficulty arises from the very strong Mg2+···H2O interaction, raising barriers to dehydration.
Using atomistic simulations, we have investigated the influence of thirty additive anions (Xn–, n = 1–3), ranging from simple halides to more complex molecules, on the first two steps of MgCO3 aggregation from solution: Mg2+ dehydration and Mg2+∙∙∙CO32– pairing.
We have computed the thermodynamic stability of solvent shared ion pairs, Mg2+···H2O···Xn–, and contact ion pairs, Mg2+···Xn–, with Mg2+ to reveal the propensity of solution additives to inhibit Mg2+∙∙∙CO32– formation.
We have determined the stabilization of undercoordinated hydrated Mg2+ states with a vacant coordination site to which CO32– can bind, subsequently initiating MgCO3 nucleation or Mg2+ incorporation into the crystal lattice.
Extensive molecular dynamics simulations of electrolyte solutions containing Na2CO3 with different sources of Mg2+, MgCl2, MgSO4 and Mg(CH3COO)2, further shows that the degree of dehydration of Mg2+ and the structure of prenucleation MgCO3 clusters changes depending on the type counterion.
Through a fundamental understanding of the role of solution additives in the mechanism of Mg2+ dehydration, our computational study can rationalize previously reported experimental observation of the effect of solvation environments on the growth of magnesite.
This understanding may contribute to identifying solution composition conditions that could promote the low-temperature CO2 conversion into MgCO3.

Related Results

Critical embryo phase transitions in the nucleated binary glycerin–carbon dioxide system
Critical embryo phase transitions in the nucleated binary glycerin–carbon dioxide system
In order to develop a consistent nucleation theory, the main assumptions of the theory should be revised. One of the questionable problems is the role of the carrier gas in nucleat...
Early-Onset Gastrointestinal Cancers
Early-Onset Gastrointestinal Cancers
ImportanceEarly-onset gastrointestinal (GI) cancer is typically defined as GI cancer diagnosed in individuals younger than 50 years. The incidence of early-onset GI cancer is risin...
Homogeneous vs. heterogeneous nucleation in water-dicarboxylic acid systems
Homogeneous vs. heterogeneous nucleation in water-dicarboxylic acid systems
Abstract. Binary heterogeneous nucleation of water-succinic/glutaric/malonic/adipic acid on nanometer-sized particles is investigated within the frame of classical heterogeneous nu...
Crystal nucleation and growth in high-entropy alloys revealed by atomic electron tomography
Crystal nucleation and growth in high-entropy alloys revealed by atomic electron tomography
Abstract High-entropy alloys (HEAs) balance mixing entropy and intermetallic phase formation enthalpy, creating a vast compositional space for structural and functional mat...
Ice Nucleation Imaged In Situ with X-ray Spectro-Microscopy
Ice Nucleation Imaged In Situ with X-ray Spectro-Microscopy
<p>Precipitation is mostly formed via the ice phase in mixed phase clouds, and ice clouds are very relevant for Earths’ climate. Freezing or prevention ...
Microanalysis Techniques to Study Atmospheric Ice Nucleation and Ice Crystal Growth
Microanalysis Techniques to Study Atmospheric Ice Nucleation and Ice Crystal Growth
The prediction of how ice crystals form represents one of the great conundrums in the atmospheric sciences with important implications for the hydrological cycle and climate. Ice-n...
Homogeneous nucleation on Mars. An unexpected process that deciphers mysterious elongated clouds
Homogeneous nucleation on Mars. An unexpected process that deciphers mysterious elongated clouds
Homogeneous nucleation has not been considered a possibility in cloud formation processes in the atmosphere of Mars (e.g. Clancy et al., 2017), since Määttänen et al. (2005) made a...
Procedure for Western blot v1
Procedure for Western blot v1
Goal: This document has the objective of standardizing the protocol for Western blot. This technique allows the detection of specific proteins separated on polyacrylamide gel and t...

Back to Top