Javascript must be enabled to continue!
Design and analysis of passive variable stiffness device based on shear stiffening gel
View through CrossRef
Abstract
Shear thickening materials are utilized as the core of variable stiffness devices in various engineering applications in recent years. However, due to the used materials being liquid, most of these devices are suffered from the problem of liquid leakage and coagulation. To address this issue, this paper proposes a design method of a passive variable stiffness device based on shear stiffening gel (SSG), which integrates the core SSG and spring into a compact structure to obtain well stability. The used SSG can affect the force transfer within the device, thereby influencing the system’s stiffness dynamically over the external impact load. Due to the core SSG being good shear stiffening properties, the device is highly sensitive to frequency and shows variable stiffness characteristics. When the frequency of external load increased from 0.1 Hz to 5 Hz, the equivalent stiffness of the device could be increased by 105.74%. An equivalent nonlinear model is used to represent the overall stiffness of the device as a function of the frequency and displacement amplitude of the load. The output of the equivalent nonlinear model agrees well with the experimental data. The cross-validation also proves the accuracy of the model fitting, which provides a quantitative description of the dynamic performance of the variable stiffness device. By combining different types of SSGs and springs with different stiffness, the design principle of the variable stiffness device proposed in this paper can be utilized in various impact-loading applications, such as designing the exoskeletal load carriage supporting mechanism and vehicle suspension systems. The work of this paper has guiding significance for the design of adaptive variable stiffness devices.
Title: Design and analysis of passive variable stiffness device based on shear stiffening gel
Description:
Abstract
Shear thickening materials are utilized as the core of variable stiffness devices in various engineering applications in recent years.
However, due to the used materials being liquid, most of these devices are suffered from the problem of liquid leakage and coagulation.
To address this issue, this paper proposes a design method of a passive variable stiffness device based on shear stiffening gel (SSG), which integrates the core SSG and spring into a compact structure to obtain well stability.
The used SSG can affect the force transfer within the device, thereby influencing the system’s stiffness dynamically over the external impact load.
Due to the core SSG being good shear stiffening properties, the device is highly sensitive to frequency and shows variable stiffness characteristics.
When the frequency of external load increased from 0.
1 Hz to 5 Hz, the equivalent stiffness of the device could be increased by 105.
74%.
An equivalent nonlinear model is used to represent the overall stiffness of the device as a function of the frequency and displacement amplitude of the load.
The output of the equivalent nonlinear model agrees well with the experimental data.
The cross-validation also proves the accuracy of the model fitting, which provides a quantitative description of the dynamic performance of the variable stiffness device.
By combining different types of SSGs and springs with different stiffness, the design principle of the variable stiffness device proposed in this paper can be utilized in various impact-loading applications, such as designing the exoskeletal load carriage supporting mechanism and vehicle suspension systems.
The work of this paper has guiding significance for the design of adaptive variable stiffness devices.
Related Results
Optimization of magnetoelectricity in thickness shear mode LiNbO3/magnetostrictive laminated composite
Optimization of magnetoelectricity in thickness shear mode LiNbO3/magnetostrictive laminated composite
Magnetoelectric (ME) composites have recently attracted much attention and triggered a great number of research activities, owing to their potential applications in sensors and tra...
Observations of the soil particle movement during direct shear tests on soil-geosynthetic interfaces
Observations of the soil particle movement during direct shear tests on soil-geosynthetic interfaces
The shear strength between soil-geosynthetic interface has been well studied by conducting large scale direct shear tests. However, the documents of the development of shear band a...
Improvement of Seismic Performance of Ordinary Reinforced Partially Grouted Concrete Masonry Shear Walls
Improvement of Seismic Performance of Ordinary Reinforced Partially Grouted Concrete Masonry Shear Walls
Reinforced masonry constitutes about 10% of all low-rise construction in the US. Most of these structures are commercial and school buildings. It may also be used for multi-story h...
Geophysical Characterization of Shear Zone in Direct Shear Test
Geophysical Characterization of Shear Zone in Direct Shear Test
Shear behavior of granular soils largely affects the safety and stability of underground and earth structures. This study presents the characteristics of the shear zone in a direct...
Simulation Study of In-Depth Gel Treatment in Heterogeneous Reservoirs with Sensitivity Analyses
Simulation Study of In-Depth Gel Treatment in Heterogeneous Reservoirs with Sensitivity Analyses
Abstract
In-depth gel treatment has become an attractive and optimum technology for remedying any problems that cause poor sweep efficiency, such as heterogeneity of...
Analysis of mud rheological characteristics based on debris flow migration process
Analysis of mud rheological characteristics based on debris flow migration process
Abstract
The rheological characteristics of debris flow are the basis of the analysis of debris flow initiation, migration and deposition process. In order to explore the r...
Model and simulation of liquid rocket organic gel spray droplet evaporation
Model and simulation of liquid rocket organic gel spray droplet evaporation
Gel propellant has the advantage of controllable flux as liquid propellant and long-term reservation as solid propellant, however, the evaporation and combustion problem of gel spr...

