Javascript must be enabled to continue!
Timing of Landsat Overpasses Effectively Captures Flow Conditions of Large Rivers
View through CrossRef
Satellites provide a temporally discontinuous record of hydrological conditions along Earth’s rivers (e.g., river width, height, water quality). The degree to which archived satellite data effectively capture the overall population of river flow frequency is unknown. Here, we use the entire archives of Landsat 5, 7, and 8 to determine when a cloud-free image is available over the United States Geological Survey (USGS) river gauges located on Landsat-observable rivers. We compare the flow frequency distribution derived from the daily gauge record to the flow frequency distribution derived from ideally sampling gauged discharge based on the timing of cloud-free Landsat overpasses. Examining the patterns of flow frequency across multiple gauges, we find that there is not a statistically significant difference between the flow frequency distribution associated with observations contained within the Landsat archive and the flow frequency distribution derived from the daily gauge data (α = 0.05), except for hydrological extremes like maximum and minimum flow. At individual gauges, we find that Landsat observations span a wide range of hydrological conditions (97% of total flow variability observed in 90% of the study gauges) but the degree to which the Landsat sample can represent flow frequency distribution varies from location to location and depends on sample size. The results of this study indicate that the Landsat archive is, on average, representative of the temporal frequencies of hydrological conditions present along Earth’s large rivers with broad utility for hydrological, ecologic and biogeochemical evaluations of river systems.
Title: Timing of Landsat Overpasses Effectively Captures Flow Conditions of Large Rivers
Description:
Satellites provide a temporally discontinuous record of hydrological conditions along Earth’s rivers (e.
g.
, river width, height, water quality).
The degree to which archived satellite data effectively capture the overall population of river flow frequency is unknown.
Here, we use the entire archives of Landsat 5, 7, and 8 to determine when a cloud-free image is available over the United States Geological Survey (USGS) river gauges located on Landsat-observable rivers.
We compare the flow frequency distribution derived from the daily gauge record to the flow frequency distribution derived from ideally sampling gauged discharge based on the timing of cloud-free Landsat overpasses.
Examining the patterns of flow frequency across multiple gauges, we find that there is not a statistically significant difference between the flow frequency distribution associated with observations contained within the Landsat archive and the flow frequency distribution derived from the daily gauge data (α = 0.
05), except for hydrological extremes like maximum and minimum flow.
At individual gauges, we find that Landsat observations span a wide range of hydrological conditions (97% of total flow variability observed in 90% of the study gauges) but the degree to which the Landsat sample can represent flow frequency distribution varies from location to location and depends on sample size.
The results of this study indicate that the Landsat archive is, on average, representative of the temporal frequencies of hydrological conditions present along Earth’s large rivers with broad utility for hydrological, ecologic and biogeochemical evaluations of river systems.
Related Results
Temporary Rivers
Temporary Rivers
Temporary rivers are those that do not flow continuously through time along their entire length. The phrase temporary rivers primarily came into use during the first decade of the ...
PlanetScope and Landsat 8 Imageries for Bathymetry Mapping
PlanetScope and Landsat 8 Imageries for Bathymetry Mapping
Bathymetry has a great importance in coastal projects. Obtaining proper bathymetric information is necessary for navigation, numerical modeling, and coastal zone management studies...
Multiphase Flow Metering:An Evaluation of Discharge Coefficients
Multiphase Flow Metering:An Evaluation of Discharge Coefficients
Abstract
The orifice discharge coefficient (CD) is the constant required to correct theoretical flow rate to actual flow rate. It is known that single phase orifi...
Fluvial geomorphology of Indian rivers: an overview
Fluvial geomorphology of Indian rivers: an overview
The rivers of India reveal certain special characteristics because they undergo large seasonal fluctuations in flow and sediment load. The rivers are adjusted to an array of discha...
Pressure Analysis of DST Flow Period Or Slug Flow For Horizontal Wells In Homogeneous Reservoir
Pressure Analysis of DST Flow Period Or Slug Flow For Horizontal Wells In Homogeneous Reservoir
Abstract
By the transient pressure for horizontal well with constant flow rate and Duhamel's principle, this paper presents the method to calculate the transient ...
Determinants of Cerebrovascular Reserve in Patients with Significant Carotid Stenosis
Determinants of Cerebrovascular Reserve in Patients with Significant Carotid Stenosis
AbstractIntroductionIn patients with 70% to 99% diameter carotid artery stenosis cerebral blood flow reserve may be protective of future ischemic cerebral events. Reserve cerebral ...
Determining the microbial and chemical contamination in Ecuador’s main rivers
Determining the microbial and chemical contamination in Ecuador’s main rivers
AbstractOne major health issue is the microbial and chemical contamination of natural freshwater, particularly in Latin American countries, such as Ecuador, where it is still lacki...
Experimental and Numerical Analysis of the Flow Field in the Integrated Valve for the Control Rod Hydraulic Drive System
Experimental and Numerical Analysis of the Flow Field in the Integrated Valve for the Control Rod Hydraulic Drive System
Control Rod Hydraulic Drive System (CRHDS) is a new type of built-in control rod drive technology, and the Integrated Valve (IV) is the key control component of it. The pulse water...

