Javascript must be enabled to continue!
Scalable Analysis of Multi-Modal Biomedical Data
View through CrossRef
Targeted diagnosis and treatment options are dependent on insights drawn from multi-modal analysis of large-scale biomedical datasets. Advances in genomics sequencing, image processing, and medical data management have supported data collection and management within medical institutions. These efforts have produced large-scale datasets and have enabled integrative analyses that provide a more thorough look of the impact of a disease on the underlying system. The integration of large-scale biomedical data commonly involves several complex data transformation steps, such as combining datasets to build feature vectors for learning analysis. Thus, scalable data integration solutions play a key role in the future of targeted medicine. Though large-scale data processing frameworks have shown promising performance for many domains, they fail to support scalable processing of complex datatypes. To address these issues and achieve scalable processing of multi-modal biomedical data, we present TraNCE, a framework that automates the difficulties of designing distributed analyses with complex biomedical data types. We outline research and clinical applications for the platform, including data integration support for building feature sets for classification. We show that the system is capable of outperforming the common alternative, based on “flattening” complex data structures, and runs efficiently when alternative approaches are unable to perform at all.Key PointsModern biomedical analyses are integrated pipelines of data access mechanisms and analysis components that operate on and produce datasets in a variety of complex, domain specific formats.Scalable data integration and aggregation solutions that support joint inference on such large-scale datasets play a key role advancing biomedical analysis.Query compilation techniques that optimize nested data processing are essential for scaling multi-modal, biomedical analysis.
Title: Scalable Analysis of Multi-Modal Biomedical Data
Description:
Targeted diagnosis and treatment options are dependent on insights drawn from multi-modal analysis of large-scale biomedical datasets.
Advances in genomics sequencing, image processing, and medical data management have supported data collection and management within medical institutions.
These efforts have produced large-scale datasets and have enabled integrative analyses that provide a more thorough look of the impact of a disease on the underlying system.
The integration of large-scale biomedical data commonly involves several complex data transformation steps, such as combining datasets to build feature vectors for learning analysis.
Thus, scalable data integration solutions play a key role in the future of targeted medicine.
Though large-scale data processing frameworks have shown promising performance for many domains, they fail to support scalable processing of complex datatypes.
To address these issues and achieve scalable processing of multi-modal biomedical data, we present TraNCE, a framework that automates the difficulties of designing distributed analyses with complex biomedical data types.
We outline research and clinical applications for the platform, including data integration support for building feature sets for classification.
We show that the system is capable of outperforming the common alternative, based on “flattening” complex data structures, and runs efficiently when alternative approaches are unable to perform at all.
Key PointsModern biomedical analyses are integrated pipelines of data access mechanisms and analysis components that operate on and produce datasets in a variety of complex, domain specific formats.
Scalable data integration and aggregation solutions that support joint inference on such large-scale datasets play a key role advancing biomedical analysis.
Query compilation techniques that optimize nested data processing are essential for scaling multi-modal, biomedical analysis.
Related Results
Modal Sosial Masyarakat Dusun Melayang dalam Pemanfaatan Buah Tengkawang di Hutan Adat Pikul
Modal Sosial Masyarakat Dusun Melayang dalam Pemanfaatan Buah Tengkawang di Hutan Adat Pikul
AbstrakModal sosial adalah kemampuan masyarakat untuk bekerjasama demi mencapai suatu tujuan bersama didalam suatu kelompok. Hutan Adat Pikul memiliki potensi tengkawang yang sanga...
Approaches to Different Learning Styles in Undergraduate Medical Students of Al-Tibri Medical College Karachi
Approaches to Different Learning Styles in Undergraduate Medical Students of Al-Tibri Medical College Karachi
Objectives: The purpose of this study was to evaluate the different styles of learning preferred by undergraduate medical students from 1st to 5th year of Al-Tibri Medical College ...
MODAL SOSIAL KANDIDAT DALAM KONSTETASI PEMILIHAN KEPALA DESA LOHIA KECAMATAN LOHIA KABUPATEN MUNA
MODAL SOSIAL KANDIDAT DALAM KONSTETASI PEMILIHAN KEPALA DESA LOHIA KECAMATAN LOHIA KABUPATEN MUNA
Tujuan penelitian ini adalah Untuk mengetahui mengetahui bagaimana Modal Sosial Kandidat Dalam Konstetasi Pemilihan Kepala Desa Lohia Kecamatan Lohia Kabupaten Muna..Metode peneli...
Peran Pemerintah Dalam Mitigasi Kejahatan Pasar Modal
Peran Pemerintah Dalam Mitigasi Kejahatan Pasar Modal
AbstrakSaat ini perkembangan ekonomi berjalan sangat pesat namun, ditengah pesatnya pertumbuhan ekonomi terdapat juga ketidakstabilan ekonomi yang kemudian memberikan peluang kepad...
MODAL SOSIO-POLITIK KEMENANGAN CALEG PEREMPUAN PADA PEMILU 2024 (Studi Kasus atas Terpilihnya Maria Roswita Mea Laki di Dapil III Nagekeo)
MODAL SOSIO-POLITIK KEMENANGAN CALEG PEREMPUAN PADA PEMILU 2024 (Studi Kasus atas Terpilihnya Maria Roswita Mea Laki di Dapil III Nagekeo)
Penelitian ini berjudul Modal Sosio-Politik Kemenangan Caleg Perempuan pada Pemilu 2024 (Studi Kasus atas Terpilihnya Maria Roswita Mea Laki di Dapil III Nagekeo). Rumusan masalah ...
The operation modal analysis of the structure crack fault diagnosis based on pseudo-successive data
The operation modal analysis of the structure crack fault diagnosis based on pseudo-successive data
In order to monitor the crack propagation of the structure in the working state for a long time, an operation modal analysis method based on pseudo-successive data is proposed. The...
Modaalkonstruktsioonid eesti ja soome palvetes
Modaalkonstruktsioonid eesti ja soome palvetes
Kokkuvõte. Siinses artiklis vaatleme modaalverbide ja neile funktsionaalselt lähedaste väljendite kasutust eesti ja soome palvetes ja küsimustes. Mõlemas keeles on palju sarnase al...
Eksplorasi Motivasi Minat Mahasiswa Akuntansi Berinvestasi Di Pasar Modal
Eksplorasi Motivasi Minat Mahasiswa Akuntansi Berinvestasi Di Pasar Modal
Penelitian ini bertujuan untuk mengetahui pengaruh sosialisasi pasar modal, pengetahuan pasar modal, dan motivasi belajar pasar modal terhadap minat mahasiswa akuntansi terhadap in...

