Javascript must be enabled to continue!
Species Diversity Induces Idiosyncratic Effects on Litter Decomposition in a Degraded Meadow Steppe
View through CrossRef
Litter decomposition is a fundamental path for nutrient cycling in a natural ecosystem. However, it remains unclear how species diversity, including richness and evenness, affects the decomposition dynamics in the context of grassland degradation. Using a litter bag technique, we investigated the litter-mixing effects of two coexisting dominant species (Leymus chinensis Lc and Phragmites australis Pa), as monocultures and mixtures with evenness (Lc:Pa) from M1 (30:70%), M2 (50:50%), and M3 (70:30%), on decomposition processes over time (60 and 365 days). The litter bags were placed on the soil surface along a degradation gradient [near pristine (NP), lightly degraded (LD), and highly degraded (HD)]. We found that 1) mass loss in mixture compositions was significantly and positively correlated with initial nitrogen (N) and cellulose contents; 2) litter mixing (richness and evenness) influenced decomposition dynamics individually and in interaction with the incubation days and the degradation gradients; 3) in a general linear model (GLM), nonadditive antagonistic effects were more prominent than additive or neutral effects in final litter and nutrients except for carbon (C); and 4) in nutrients (C, N, lignin) and C/N ratio, additive effects shifted to nonadditive with incubation time. We speculated that the occurrence of nonadditive positive or negative effects varied with litter and nutrients mass remaining in each degraded gradient under the mechanism of initial litter quality of monoculture species, soil properties of experimental sites, and incubation time. Our study has important implications for grassland improvement and protection by considering species biodiversity richness, as well as species evenness.
Title: Species Diversity Induces Idiosyncratic Effects on Litter Decomposition in a Degraded Meadow Steppe
Description:
Litter decomposition is a fundamental path for nutrient cycling in a natural ecosystem.
However, it remains unclear how species diversity, including richness and evenness, affects the decomposition dynamics in the context of grassland degradation.
Using a litter bag technique, we investigated the litter-mixing effects of two coexisting dominant species (Leymus chinensis Lc and Phragmites australis Pa), as monocultures and mixtures with evenness (Lc:Pa) from M1 (30:70%), M2 (50:50%), and M3 (70:30%), on decomposition processes over time (60 and 365 days).
The litter bags were placed on the soil surface along a degradation gradient [near pristine (NP), lightly degraded (LD), and highly degraded (HD)].
We found that 1) mass loss in mixture compositions was significantly and positively correlated with initial nitrogen (N) and cellulose contents; 2) litter mixing (richness and evenness) influenced decomposition dynamics individually and in interaction with the incubation days and the degradation gradients; 3) in a general linear model (GLM), nonadditive antagonistic effects were more prominent than additive or neutral effects in final litter and nutrients except for carbon (C); and 4) in nutrients (C, N, lignin) and C/N ratio, additive effects shifted to nonadditive with incubation time.
We speculated that the occurrence of nonadditive positive or negative effects varied with litter and nutrients mass remaining in each degraded gradient under the mechanism of initial litter quality of monoculture species, soil properties of experimental sites, and incubation time.
Our study has important implications for grassland improvement and protection by considering species biodiversity richness, as well as species evenness.
Related Results
Tree species richness affects litter production and decomposition rates in a tropical biodiversity experiment
Tree species richness affects litter production and decomposition rates in a tropical biodiversity experiment
We report data on leaf litter production and decomposition from a manipulative biodiversity experiment with trees in tropical Panama, which has been designed to explore the relatio...
Higher Soil Mesofauna Abundance and Microbial Activities Drive Litter Decomposition in Subtropical Forests
Higher Soil Mesofauna Abundance and Microbial Activities Drive Litter Decomposition in Subtropical Forests
Soil fauna play an important role in litter decomposition and affect the “home-field advantage” (HFA) of litter decomposition. However, how this effect is modulated by the microenv...
Leaf litter diversity and structure of microbial decomposer communities modulate litter decomposition in aquatic systems
Leaf litter diversity and structure of microbial decomposer communities modulate litter decomposition in aquatic systems
AbstractLeaf litter decomposition is a major ecosystem process that can link aquatic to terrestrial ecosystems by flows of nutrients. Biodiversity and ecosystem functioning researc...
Agricultural land use weakens the relationship between biodiversity and ecosystem functioning
Agricultural land use weakens the relationship between biodiversity and ecosystem functioning
Leaf litter decomposition is a significant ecosystem process for streams' energy provisioning, while species‐specific decomposition rates often form a continuum from slow to fast d...
Variability of litter carbon stocks in Croatia
Variability of litter carbon stocks in Croatia
Litter stores around 5% of total carbon (C) stocks in the World's forests (Pan et al. 2011) and is one of five forest ecosystem C pools in national greenhouse gas (GHG) inventory r...
Invasive<i> Acacia mangium</i> Leaf Litter Modifies Soil Chemical Properties of A Bornean Tropical Heath Forest: A Soil Incubation Study
Invasive<i> Acacia mangium</i> Leaf Litter Modifies Soil Chemical Properties of A Bornean Tropical Heath Forest: A Soil Incubation Study
This study investigated the effects of Acacia mangium Willd. leaf litter on soil chemical properties of a tropical heath forest in Borneo using a controlled soil incubation experim...
THE MAIN STAGES OF THE HISTORY OF POPULATION OF THE FOREST-STEPPE OF DNIEPER LEFT-BANK AREA IN THE MID-7th — EARLY 3rd CENTURY BC
THE MAIN STAGES OF THE HISTORY OF POPULATION OF THE FOREST-STEPPE OF DNIEPER LEFT-BANK AREA IN THE MID-7th — EARLY 3rd CENTURY BC
The paper is devoted to the periodization of the ethnic and cultural history of population of the forest-steppe of Dnieper Left Bank area during the Scythian Age. The analysis of t...
In situ characterization of forest litter using ground‐penetrating radar
In situ characterization of forest litter using ground‐penetrating radar
AbstractDecomposing litter accumulated on the soil surface in forests plays a major role in several ecosystem processes; its detailed characterization is therefore essential for th...

