Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Innovative Solutions to the Fractional Diffusion Equation Using the Elzaki Transform

View through CrossRef
This study explores the application of advanced mathematical techniques to solve fractional differential equations, focusing particularly on the fractional diffusion equation. The fractional diffusion equation, used to simulate a range of physical and engineering phenomena, poses considerable difficulties when applied to fractional orders. Thus, by utilizing the mighty powers of fractional calculus, we employ the variational iteration method (VIM) with the Elzaki transform to produce highly accurate approximations for these specific differential equations. The VIM provides an iterative framework for refining solutions progressively, while the Elzaki transform simplifies the complex integral transforms involved. By integrating these methodologies, we achieve accurate and efficient solutions to the fractional diffusion equation. Our findings demonstrate the robustness and effectiveness of combining the VIM and the Elzaki transform in handling fractional differential equations, offering explicit functional expressions that are beneficial for theoretical analysis and practical applications. This research contributes to the expanding field of fractional calculus, providing valuable insights and useful tools for solving complex, nonlinear fractional differential equations across various scientific and engineering disciplines.
Title: Innovative Solutions to the Fractional Diffusion Equation Using the Elzaki Transform
Description:
This study explores the application of advanced mathematical techniques to solve fractional differential equations, focusing particularly on the fractional diffusion equation.
The fractional diffusion equation, used to simulate a range of physical and engineering phenomena, poses considerable difficulties when applied to fractional orders.
Thus, by utilizing the mighty powers of fractional calculus, we employ the variational iteration method (VIM) with the Elzaki transform to produce highly accurate approximations for these specific differential equations.
The VIM provides an iterative framework for refining solutions progressively, while the Elzaki transform simplifies the complex integral transforms involved.
By integrating these methodologies, we achieve accurate and efficient solutions to the fractional diffusion equation.
Our findings demonstrate the robustness and effectiveness of combining the VIM and the Elzaki transform in handling fractional differential equations, offering explicit functional expressions that are beneficial for theoretical analysis and practical applications.
This research contributes to the expanding field of fractional calculus, providing valuable insights and useful tools for solving complex, nonlinear fractional differential equations across various scientific and engineering disciplines.

Related Results

Solving Undamped and Damped Fractional Oscillators via Integral Rohit Transform
Solving Undamped and Damped Fractional Oscillators via Integral Rohit Transform
Background: The dynamics of fractional oscillators are generally described by fractional differential equations, which include the fractional derivative of the Caputo or Riemann-Li...
Soham Transform in Fractional Differential Equations
Soham Transform in Fractional Differential Equations
Objectives: Soham transforms is one of the appropriate tools for solving fractional differential equations that are flexible enough to adapt to different purposes. Methods: Integra...
Comment on: Macroscopic water vapor diffusion is not enhanced in snow
Comment on: Macroscopic water vapor diffusion is not enhanced in snow
Abstract. The central thesis of the authors’ paper is that macroscopic water vapor diffusion is not enhanced in snow compared to diffusion through humid air alone. Further, mass di...
The waveform comparison of three common-used fractional viscous acoustic wave equations
The waveform comparison of three common-used fractional viscous acoustic wave equations
Abstract The forward simulation of the viscous acoustic wave equation is an essential part of geophysics and energy resources exploration research. The viscous acoustic sei...
On the Solutions of the Fractional-Order Sawada–Kotera–Ito Equation and Modeling Nonlinear Structures in Fluid Mediums
On the Solutions of the Fractional-Order Sawada–Kotera–Ito Equation and Modeling Nonlinear Structures in Fluid Mediums
This study investigates the wave solutions of the time-fractional Sawada–Kotera–Ito equation (SKIE) that arise in shallow water and many other fluid mediums by utilizing some of th...
Effects of Some Simpilfying Assumptions On Interpretation of Transient Data
Effects of Some Simpilfying Assumptions On Interpretation of Transient Data
Abstract The fluid flows in porous medium is described by the diffusion type of partial differential equation. In deriving the flow equation for the constant comp...
Gohar Fractional Derivative: Theory and Applications
Gohar Fractional Derivative: Theory and Applications
The local fractional derivatives marked the beginning of a new era in fractional calculus. Due to their that have never been observed before in the field, they are able to fill in ...
Similarity Solutions for Shallow Hydraulic Fracture in Impermeable Rock
Similarity Solutions for Shallow Hydraulic Fracture in Impermeable Rock
ABSTRACT The paper deals with the plane strain problem ofa shallow fluid-driven fracture propagating parallel to a free surface in an impermeable elastic rock. Fo...

Back to Top