Javascript must be enabled to continue!
Preliminary GRACE-FO gravity field solutions from Tongji University
View through CrossRef
<p>Due to the battery issue, the Gravity Recovery and Climate Experiment (GRACE) mission unfortunately came to an end in October 2017 after providing more than 15 years of mass transport information of our changing planet. To continue to monitoring the mass transport in the Earth system, the GRACE Follow-On (GRACE-FO) was launched in May 2018. As a new feature of GRACE-FO, a Laser Ranging Interferometer (LRI) was equipped to measure the inter-satellite range at a nanometer level. Since May 2019, GRACE-FO Level-1B observations have been made available to our community. Using the GRACE-FO Level-1B observations without laser ranging information, preliminary GRACE-FO gravity field solutions from Center for Space Research (CSR), GeoForschungsZentrum (GFZ), Jet Propulsion Laboratory (JPL) and Graz University of Technology have been released. Incorporating laser ranging observations into gravity field determination, a preliminary time series of GRACE-FO gravity field solutions has been derived from Tongji University in collaboration with University of Bonn. In this paper, the signal and noise of our gravity field solutions are analyzed and compared to those from other research groups. Our results show that the laser ranging observations with a sampling rate of 2s are able to improve gravity field solutions by about 7% in terms of geoid degree variances up to degree and order 96 as compared to the K-Band ranging data with a sampling rate of 5s.</p>
Title: Preliminary GRACE-FO gravity field solutions from Tongji University
Description:
<p>Due to the battery issue, the Gravity Recovery and Climate Experiment (GRACE) mission unfortunately came to an end in October 2017 after providing more than 15 years of mass transport information of our changing planet.
To continue to monitoring the mass transport in the Earth system, the GRACE Follow-On (GRACE-FO) was launched in May 2018.
As a new feature of GRACE-FO, a Laser Ranging Interferometer (LRI) was equipped to measure the inter-satellite range at a nanometer level.
Since May 2019, GRACE-FO Level-1B observations have been made available to our community.
Using the GRACE-FO Level-1B observations without laser ranging information, preliminary GRACE-FO gravity field solutions from Center for Space Research (CSR), GeoForschungsZentrum (GFZ), Jet Propulsion Laboratory (JPL) and Graz University of Technology have been released.
Incorporating laser ranging observations into gravity field determination, a preliminary time series of GRACE-FO gravity field solutions has been derived from Tongji University in collaboration with University of Bonn.
In this paper, the signal and noise of our gravity field solutions are analyzed and compared to those from other research groups.
Our results show that the laser ranging observations with a sampling rate of 2s are able to improve gravity field solutions by about 7% in terms of geoid degree variances up to degree and order 96 as compared to the K-Band ranging data with a sampling rate of 5s.
</p>.
Related Results
Gravity data reduction, Bouguer anomaly, and gravity disturbance
Gravity data reduction, Bouguer anomaly, and gravity disturbance
Each point on the earth has a gravity and gravity potential value. Surfaces formed by connecting points with equal gravity potential values are called equipotential surfaces or lev...
The research unit NEROGRAV: first results on stochastic modeling for gravity field determination with real GRACE and GRACE-FO data
The research unit NEROGRAV: first results on stochastic modeling for gravity field determination with real GRACE and GRACE-FO data
<p>The central hypothesis of the Research Unit (RU) NEROGRAV (New Refined Observations of Climate Change from Spaceborne Gravity Missions), funded for three years by ...
Revisiting excitation of length-of-day using recent GRACE/GRACE-FO, SLR, SLR+GRACE/GRACE-FO gravity solutions and geophysical models
Revisiting excitation of length-of-day using recent GRACE/GRACE-FO, SLR, SLR+GRACE/GRACE-FO gravity solutions and geophysical models
Variations in Earth’s rotation, encompassing polar motion (PM) and the length-of-day (LOD) changes, result from a variety of factors influencing mass distribution and mov...
Using spherical scaling functions in scalar and vector airborne gravimetry
Using spherical scaling functions in scalar and vector airborne gravimetry
<p>Airborne gravimetry is capable to provide Earth&#8217;s gravity data of high accuracy and spatial resolution for any area of interest, in particular for ha...
WHU‐GRACE‐GPD01s: A Series of Constrained Monthly Gravity Field Solutions Derived From GRACE‐Based Geopotential Differences
WHU‐GRACE‐GPD01s: A Series of Constrained Monthly Gravity Field Solutions Derived From GRACE‐Based Geopotential Differences
AbstractTo suppress the correlated noise of Gravity Recovery and Climate Experiment (GRACE) spherical harmonic (SH) solutions, we developed a series of constrained monthly gravity ...
The Absolute Gravity Reference Network of Italy
The Absolute Gravity Reference Network of Italy
The project for realizing the reference network for absolute gravity in the Italian area is presented. This fundamental infrastructure is the general frame for all the scientific a...
Martin Luther on Grace
Martin Luther on Grace
Grace is an essential element of Christian theological reflection. Primarily, the divine attribute or trait labeled “grace” refers to God’s disposition and activity in regard to th...
Detecting Preseismic Signals in GRACE Gravity Solutions: application to the 2011 Tohoku earthquake
Detecting Preseismic Signals in GRACE Gravity Solutions: application to the 2011 Tohoku earthquake
<p>Retrieving short-term preseismic signals before the occurrence of great subduction earthquakes is a major goal for seismic hazard mitigation. It requires a continu...

