Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Electrospinning Fibers Modified with Near Infrared Light‐Excited Copper Nanoparticles for Antibacterial and Bone Regeneration

View through CrossRef
AbstractBone infection is an inflammatory bone disease caused by infectious microorganisms, which can lead to progressive bone destruction and loss. It is still an urgent and unmet clinical need to develop a rapid and effective sterilized method to reduce bone infection. In this study, near‐infrared (NIR) light‐responsive polydopamine (PDA) adherent Copper nanoparticles (Cu‐NPs) are constructed using electrospun poly lactic acid (PLLA) fibers as a substrate (PLLA@PDA/Cu). Dopamine (DA) is self‐polymerized to synthesize the PDA on the fiber surface, which can reduce Cu2+ to form Cu‐NPs. Results show that the addition of PDA and Cu2+ significantly improves the hydrophilicity and bioactivity of the prepared PLLA@PDA/Cu composite fibers, demonstrating superior physiological stability. Due to the unique photothermal properties of Cu‐NPs, PLLA@PDA/Cu is able to generate a large amount of reactive oxygen species under 808 nm NIR laser irradiation, with a photothermal conversion efficiency of 23.7%. The antimicrobial effect of Cu‐NPs is synergistic with their photothermal effect, which potentiated the antibacterial rate of composite fibers . The results of cell experiments show that this composite fiber demonstrates satisfactory osteogenic and angiogenic properties. In conclusion, a photothermal antibacterial PLLA@PDA/Cu composite fiber with great potential in healing infectious bone defects is successfully engineered.
Title: Electrospinning Fibers Modified with Near Infrared Light‐Excited Copper Nanoparticles for Antibacterial and Bone Regeneration
Description:
AbstractBone infection is an inflammatory bone disease caused by infectious microorganisms, which can lead to progressive bone destruction and loss.
It is still an urgent and unmet clinical need to develop a rapid and effective sterilized method to reduce bone infection.
In this study, near‐infrared (NIR) light‐responsive polydopamine (PDA) adherent Copper nanoparticles (Cu‐NPs) are constructed using electrospun poly lactic acid (PLLA) fibers as a substrate (PLLA@PDA/Cu).
Dopamine (DA) is self‐polymerized to synthesize the PDA on the fiber surface, which can reduce Cu2+ to form Cu‐NPs.
Results show that the addition of PDA and Cu2+ significantly improves the hydrophilicity and bioactivity of the prepared PLLA@PDA/Cu composite fibers, demonstrating superior physiological stability.
Due to the unique photothermal properties of Cu‐NPs, PLLA@PDA/Cu is able to generate a large amount of reactive oxygen species under 808 nm NIR laser irradiation, with a photothermal conversion efficiency of 23.
7%.
The antimicrobial effect of Cu‐NPs is synergistic with their photothermal effect, which potentiated the antibacterial rate of composite fibers .
The results of cell experiments show that this composite fiber demonstrates satisfactory osteogenic and angiogenic properties.
In conclusion, a photothermal antibacterial PLLA@PDA/Cu composite fiber with great potential in healing infectious bone defects is successfully engineered.

Related Results

Poster 107: The Use of Coacervate Sustained Release System to Identify the Most Potent BMP for Bone Regeneration
Poster 107: The Use of Coacervate Sustained Release System to Identify the Most Potent BMP for Bone Regeneration
Objectives: Bone morphogenetic proteins (BMPs) belong to the transforming growth factor superfamily that were first discovered by Marshall Urist. There are 14 BMPs identified to da...
Antimicrobial activity of ciprofloxacin-coated gold nanoparticles on selected pathogens
Antimicrobial activity of ciprofloxacin-coated gold nanoparticles on selected pathogens
Antibiotic resistance amongst bacterial pathogens is a crisis that has been worsening over recent decades, resulting in serious and often fatal infections that cannot be treated by...
Enhanced Thermal and Antibacterial Properties of Stereo-Complexed Polylactide Fibers Doped With Nano-Silver
Enhanced Thermal and Antibacterial Properties of Stereo-Complexed Polylactide Fibers Doped With Nano-Silver
Stereo-complexed polylactide (sc-PLA) fibers with excellent heat resistance and antibacterial properties were prepared by electrospinning. Due to poor heat resistance, common poly(...
Multifunctional Silver Nanoparticles: Synthesis and Applications
Multifunctional Silver Nanoparticles: Synthesis and Applications
Multifunctional silver nanoparticles have attracted widely due to their potential applications. Based on the properties of individual silver nanoparticles, such as plasmonic and an...
Structure and properties of composite antibacterial PET fibers
Structure and properties of composite antibacterial PET fibers
AbstractPoly(ethylene terephthalate) (PET) had been compounded with antibacterial materials for preparing antibacterial masterbatch using a twin‐screw extruder. Composite antibacte...
The irradiated human mandible
The irradiated human mandible
Mandibular bone is known to be susceptible to irradiation damage, especially when radiation dose exceeds 50 Gy. This can result in compromised wound healing and ultimately osteorad...
Copper‐Based Nanoparticles as Antibacterial Agents
Copper‐Based Nanoparticles as Antibacterial Agents
AbstractOver the past few decades, the resistance of different pathogenic bacteria to various antibiotics has gradually increased. In order to solve the problems of this modern era...

Back to Top