Javascript must be enabled to continue!
A Way to Enhance the Efficiency of a Vertical Axis Wind Turbine
View through CrossRef
Vertical Axis Wind Turbine (VAWT) can perform better than Horizontal Axis Wind Turbine (HAWT) because VAWTs are relatively simple, quiet, and easy to install. It can take wind from any directions, and operate efficiently in urban areas where turbulent wind conditions usually happen. The weakest point for its configuration, however, is its low efficiency so more intensive research is required.Actual VAWT performance can be predicted based on a determination of the forces acting on blades that produce the turbine’s torque. Thus, this paper proposed a new model of force analysis for calculation of VAWT’s performance and a way to enhance the efficiency of VAWT through proper variations of the pitch angles. Additionally, in order to increase the efficiency of the VAWT for a given tip speed ratio, the solidity in term of blade’s number can be adjusted.Results show that right changes in the value of pitch angles and proper selection of the number of blades can considerably increase the efficiency of the turbine and reduce amplitude of turbine’s torque variation. The new model of force analysis can be helpful for aerodynamic analysis of the VAWT turbine for its better design.
Trans Tech Publications, Ltd.
Title: A Way to Enhance the Efficiency of a Vertical Axis Wind Turbine
Description:
Vertical Axis Wind Turbine (VAWT) can perform better than Horizontal Axis Wind Turbine (HAWT) because VAWTs are relatively simple, quiet, and easy to install.
It can take wind from any directions, and operate efficiently in urban areas where turbulent wind conditions usually happen.
The weakest point for its configuration, however, is its low efficiency so more intensive research is required.
Actual VAWT performance can be predicted based on a determination of the forces acting on blades that produce the turbine’s torque.
Thus, this paper proposed a new model of force analysis for calculation of VAWT’s performance and a way to enhance the efficiency of VAWT through proper variations of the pitch angles.
Additionally, in order to increase the efficiency of the VAWT for a given tip speed ratio, the solidity in term of blade’s number can be adjusted.
Results show that right changes in the value of pitch angles and proper selection of the number of blades can considerably increase the efficiency of the turbine and reduce amplitude of turbine’s torque variation.
The new model of force analysis can be helpful for aerodynamic analysis of the VAWT turbine for its better design.
Related Results
=== PAPER RETRACTED === === PAPER RETRACTED === === PAPER RETRACTED === === PAPER RETRACTED === === PAPER RETRACTED === === PAPER RETRACTED === Knowledge of the Problem and Intention to Act on Student Environmentally Responsible Behavior
=== PAPER RETRACTED === === PAPER RETRACTED === === PAPER RETRACTED === === PAPER RETRACTED === === PAPER RETRACTED === === PAPER RETRACTED === Knowledge of the Problem and Intention to Act on Student Environmentally Responsible Behavior
<p><span lang="IN"><span style="vertical-align: inherit;"><span style="vertical-align: inherit;">=== PAPER RETRACTED === </span></span></span...
Design and Performance Analysis of Distributed Equal Angle Spiral Vertical Axis Wind Turbine
Design and Performance Analysis of Distributed Equal Angle Spiral Vertical Axis Wind Turbine
Background:
The wind turbine is divided into a horizontal axis and a vertical axis depending
on the relative positions of the rotating shaft and the ground. The advantage of the ch...
Analysis of Senegal Type Vertical Axis Wind Turbines Arrangement in Wind Farm
Analysis of Senegal Type Vertical Axis Wind Turbines Arrangement in Wind Farm
Background:
In a wind farm, the wind speed of the downstream wind turbine will be
lower than the wind speed of the upstream wind turbine due to the influence of the wake. Therefore...
Wake Alleviating Devices for Offshore Wind Turbines
Wake Alleviating Devices for Offshore Wind Turbines
The wake behind an offshore wind turbine can persist for several turbine diameters, so decreasing the space between wind turbines in an array leads to strong wake-turbine interacti...
Study and Analysis of Adaptive PI Control for Pitch Angle on Wind Turbine System
Study and Analysis of Adaptive PI Control for Pitch Angle on Wind Turbine System
In the current work, a study is proposed using the engineering program MATLAB through computer tests of a simulation model for modifying the tilt angle in wind turbines, with a stu...
Savonius Rotor for Offshore Wind Energy Conversion
Savonius Rotor for Offshore Wind Energy Conversion
Abstract
Analysis of performance is presented for wind energy conversion by a Savonius type vertical axis rotor configured for generation of electrical power. The...
wLEACH: Real-Time Meteorological Data Based Wind LEACH
wLEACH: Real-Time Meteorological Data Based Wind LEACH
Introduction:Nowadays, Wireless Sensor Network (WSN) plays an important role in various fields. The limited power capability of the sensor nodes in the WSN brings constraints on th...
Six-Bucket Sim-Savonius Hybrid Turbine: Experimental Analysis and Performance Evaluation
Six-Bucket Sim-Savonius Hybrid Turbine: Experimental Analysis and Performance Evaluation
The growing awareness and apprehension regarding environmental issues have led to a surge in the demand for energy alternatives that are environmentally sustainable. Wind energy is...

