Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

A study of one-dimensional colliding laser-produced plasmas through modeling and experimentation

View through CrossRef
An investigation was conducted into two colliding laser-produced plasmas collimated by two face-to-face channels, which makes the plasmas close to one-dimensional (1-D) and thus easier to simulate. The study was carried out using time-resolved imaging, and a 1-D fluid-descriptive model with the ambipolar electric field and collisional coupling taken into account. The time-resolved images show that the 1-D colliding plasmas follow a division into three distinct periods, namely, pre-colliding, colliding, and finally the stagnation layer dissipating. In the pre-colliding period, there is no plasma coming out of the channels, but illumination features are observed near the inner surfaces of the two blocks for more than 150 ns, which is much longer than the laser pulse duration. In the colliding period, there is continuous ejection of plasma from the channels and the formation of a stagnation layer due to the collision of the two plasmas. The dissipation of the stagnation layer into its nearby space in the third stage can be clearly observed in the images. Applying the 1-D model, the simulation results predict the temperature spikes and density increase in the layer due to the conversion of the macro-kinetic energy of the plasmas into their internal energy with the flow velocities almost vanishing. The ratios of the ion–ion mean-free-path to the characteristic length at the midpoint of the two plasmas, extracted from the simulation, indicate that the stagnation layer is a soft one with partial plasma interpenetration through the interface between the two plasmas.
Title: A study of one-dimensional colliding laser-produced plasmas through modeling and experimentation
Description:
An investigation was conducted into two colliding laser-produced plasmas collimated by two face-to-face channels, which makes the plasmas close to one-dimensional (1-D) and thus easier to simulate.
The study was carried out using time-resolved imaging, and a 1-D fluid-descriptive model with the ambipolar electric field and collisional coupling taken into account.
The time-resolved images show that the 1-D colliding plasmas follow a division into three distinct periods, namely, pre-colliding, colliding, and finally the stagnation layer dissipating.
In the pre-colliding period, there is no plasma coming out of the channels, but illumination features are observed near the inner surfaces of the two blocks for more than 150 ns, which is much longer than the laser pulse duration.
In the colliding period, there is continuous ejection of plasma from the channels and the formation of a stagnation layer due to the collision of the two plasmas.
The dissipation of the stagnation layer into its nearby space in the third stage can be clearly observed in the images.
Applying the 1-D model, the simulation results predict the temperature spikes and density increase in the layer due to the conversion of the macro-kinetic energy of the plasmas into their internal energy with the flow velocities almost vanishing.
The ratios of the ion–ion mean-free-path to the characteristic length at the midpoint of the two plasmas, extracted from the simulation, indicate that the stagnation layer is a soft one with partial plasma interpenetration through the interface between the two plasmas.

Related Results

Excimer Laser Micromachining of MEMS Materials
Excimer Laser Micromachining of MEMS Materials
Conventional photolithography-based microfabrication techniques are limited to two-dimensional fabrication and only particular materials can be used. Excimer laser micromachining e...
Hybrid Plasmas for Materials Processing
Hybrid Plasmas for Materials Processing
Hybrid plasmas have been reported in various areas of research over the last 40 years. However, a general overview of hybrid plasmas has never been presented or reported. In the pr...
Double resonant sum-frequency generation in an external-cavity under high-efficiency frequency conversion
Double resonant sum-frequency generation in an external-cavity under high-efficiency frequency conversion
In recent years, more than 90% of the signal laser power can be up-converted based on the high-efficiency double resonant external cavity sum-frequency generation (SFG), especially...
Laser show safety for smaller shows: The ILDA category a laser show standard
Laser show safety for smaller shows: The ILDA category a laser show standard
The International Laser Display Association has developed a “Category A Standard” for laser shows that ILDA considers to be generally recognized as safe under the conditions of the...
Development of a high intensity Mid-Ir OPCPA pumped by a HO:YLF amplifier
Development of a high intensity Mid-Ir OPCPA pumped by a HO:YLF amplifier
The continuous development of laser sources delivering ultra-short light pulses underpins much of the current progress in experimental science, particularly in the domain of physic...
Laser Cladded Surface Hardening Coating With Gradient of Mechanical Properties
Laser Cladded Surface Hardening Coating With Gradient of Mechanical Properties
The present dissertation “Laser Cladded Surface Hardening Coating with Gradient of Mechanical Properties” is devoted to the research of laser cladding process for obtaining high qu...
Management of Lower Limb Varicose Veins Using Endovenous Laser Ablation, Micro-Phlebectomy, and Sclerotherapy Using Multimodal Analgesia
Management of Lower Limb Varicose Veins Using Endovenous Laser Ablation, Micro-Phlebectomy, and Sclerotherapy Using Multimodal Analgesia
Abstract Introduction Previously, the conventional surgical procedure of high-ligation and saphenous stripping was commonly used to treat varicose veins (VVs). However, contemporar...
Comparative study of near-infrared pulsed laser machining of carbon fiber reinforced plastics
Comparative study of near-infrared pulsed laser machining of carbon fiber reinforced plastics
<p>Carbon fiber-reinforced plastics (CFRPs) have gained widespread popularity as a lightweight, high-strength alternative to traditional materials. The unique anisotropic pro...

Back to Top