Javascript must be enabled to continue!
Modified Washington Hydraulic Fracture Test to Determine D-Cracking Susceptible Aggregate
View through CrossRef
Abstract
In the Strategic Highway Research Program (SHRP) a test method for identifying D-cracking susceptible aggregates in approximately eight days was developed to replace the widely used but time-consuming rapid freezing-and-thawing test using ASTM C 666 test methods. The basic assumption in this new method is that the hydraulic pressure expected in concrete aggregates during freezing and thawing can be simulated by subjecting aggregates, submerged in water, to high pressures and the extreme rapid release of the pressure. The percent fracture, percent mass loss, and hydraulic fracture index are the parameters calculated as a result of the test, which is commonly called the Washington Hydraulic Fracture Test (WHFT). A number of states have conducted tests using this apparatus on the same aggregate source and have found a scatter in the results. These reports prompted research on a newer modified apparatus that accounts for this variability by allowing for a larger specimen and/or sample size and also introducing a computer interface. The WHFT 97 is completely automated in terms of controlling the testing procedure for each respective ten cycles of operation, and requires minimal manual labor.
Twenty-one different aggregate sources, with different degrees of freezing and thawing susceptibility, were tested according to the WHFT test procedure on both machines (the original WHFT 94 and the WHFT 97) to establish a correlation, if possible, between the results of the proposed WHFT test and those reported for the ASTM C 666 Method B as modified by the Illinois Department of Transportation (ILDOT). In addition, a petrographic analysis was conducted on each aggregate source in order to determine its percentage of air voids, pore size, and pore size distribution. A direct correlation was not established; hence, the test data were compared using the pass/fail criteria to establish the potential of the UIC Modified WHFT 97 as a screening test. The failure criteria presented by the percent fracture (2%) from the WHFT 97 test and 0.060% maximum allowable expansion from the ILDOT freezing and thawing test were used. This comparison indicated that 67% of the test results on the WHFT 94 and 76% on the WHFT 97 were identified correctly based on the ILDOT criteria. All the aggregate types (dolomite, gravel, ACBF slag) were successfully classified using these failure modes with the exception of one aggregate type, limestone. It appears, based on this comparison, that the WHFT 97 test may have the potential to be used as a screening test prior to the ASTM freezing and thawing test. In addition, the petrographic investigation showed potential in rating limestone aggregate as well as determining if other testing is required to identify D-cracking susceptible aggregate.
Title: Modified Washington Hydraulic Fracture Test to Determine D-Cracking Susceptible Aggregate
Description:
Abstract
In the Strategic Highway Research Program (SHRP) a test method for identifying D-cracking susceptible aggregates in approximately eight days was developed to replace the widely used but time-consuming rapid freezing-and-thawing test using ASTM C 666 test methods.
The basic assumption in this new method is that the hydraulic pressure expected in concrete aggregates during freezing and thawing can be simulated by subjecting aggregates, submerged in water, to high pressures and the extreme rapid release of the pressure.
The percent fracture, percent mass loss, and hydraulic fracture index are the parameters calculated as a result of the test, which is commonly called the Washington Hydraulic Fracture Test (WHFT).
A number of states have conducted tests using this apparatus on the same aggregate source and have found a scatter in the results.
These reports prompted research on a newer modified apparatus that accounts for this variability by allowing for a larger specimen and/or sample size and also introducing a computer interface.
The WHFT 97 is completely automated in terms of controlling the testing procedure for each respective ten cycles of operation, and requires minimal manual labor.
Twenty-one different aggregate sources, with different degrees of freezing and thawing susceptibility, were tested according to the WHFT test procedure on both machines (the original WHFT 94 and the WHFT 97) to establish a correlation, if possible, between the results of the proposed WHFT test and those reported for the ASTM C 666 Method B as modified by the Illinois Department of Transportation (ILDOT).
In addition, a petrographic analysis was conducted on each aggregate source in order to determine its percentage of air voids, pore size, and pore size distribution.
A direct correlation was not established; hence, the test data were compared using the pass/fail criteria to establish the potential of the UIC Modified WHFT 97 as a screening test.
The failure criteria presented by the percent fracture (2%) from the WHFT 97 test and 0.
060% maximum allowable expansion from the ILDOT freezing and thawing test were used.
This comparison indicated that 67% of the test results on the WHFT 94 and 76% on the WHFT 97 were identified correctly based on the ILDOT criteria.
All the aggregate types (dolomite, gravel, ACBF slag) were successfully classified using these failure modes with the exception of one aggregate type, limestone.
It appears, based on this comparison, that the WHFT 97 test may have the potential to be used as a screening test prior to the ASTM freezing and thawing test.
In addition, the petrographic investigation showed potential in rating limestone aggregate as well as determining if other testing is required to identify D-cracking susceptible aggregate.
Related Results
Experimental laboratory study of hydraulic fracture interaction with pre-existing fault
Experimental laboratory study of hydraulic fracture interaction with pre-existing fault
Hydraulic fracturing remains the primary method of increasing hydrocarbon inflow to a borehole. Despite the many years of experience in using this method and the existence of vario...
Fracture Modelling Using Seismic Based Fracture Intensity Volume, a Case Study in Middle East
Fracture Modelling Using Seismic Based Fracture Intensity Volume, a Case Study in Middle East
Abstract
In this paper, a case study in a fractured carbonate reservoir is presented to demonstrate the approach of fracture modeling using fracture intensity vol...
Study of Damage Evaluation of Hydraulic Fracturing to Reservoirs
Study of Damage Evaluation of Hydraulic Fracturing to Reservoirs
Abstract
Classic hydraulic fracturing analysis is based on tensile strength of rock, failure criteria of fracture mechanics or Mohr-Coulomb criteria. The existing...
VOLUMETRIC RIGIDITY OF HYDRAULIC SYSTEMS
VOLUMETRIC RIGIDITY OF HYDRAULIC SYSTEMS
A hydraulic drive is a set of interacting hydraulic devices that is designed to be ghosted by means of a working fluid under pressure. The main element in hydraulic drives most mac...
The influence mechanism of natural fractures on hydraulic fracture propagation in Mabei shale reservoir
The influence mechanism of natural fractures on hydraulic fracture propagation in Mabei shale reservoir
The resource potential of shale in Fengcheng formation in Mabei is huge, but it must rely on efficient hydraulic fracturing technology to obtain reservoir stimulation and achieve e...
Black Wax(ing): On Gil Scott-Heron and the Walking Interlude
Black Wax(ing): On Gil Scott-Heron and the Walking Interlude
The film opens in an unidentified wax museum. The camera pans from right to left, zooming in on key Black historical figures who have been memorialized in wax. W.E.B. Du Bois, Mari...
Quantifying the Sensitivity of Dielectric Dispersion Data to Fracture Properties in Fractured Rocks
Quantifying the Sensitivity of Dielectric Dispersion Data to Fracture Properties in Fractured Rocks
Evaluation of fluid storage and flow capacity of a fractured rock system needs a comprehensive characterization of all the fracture properties. These properties include the fractur...
Experimental and Numerical Investigation on Fracture Propagation Sensitivity Parameters in Deep Coal Seams
Experimental and Numerical Investigation on Fracture Propagation Sensitivity Parameters in Deep Coal Seams
ABSTRACT:
Hydraulic fracturing is the primary method for increasing hydrocarbon production in the extraction of deep coal bed methane. Understanding the initiatio...

