Javascript must be enabled to continue!
Immobilized KDN Lipase on Macroporous Resin for Isopropyl Myristate Synthesis
View through CrossRef
Free enzymes often face economic problems because of their non-repeatability and variability, which limit their application in industrial production. In this study, KDN lipase was immobilized with the macroporous resin LXTE-1000 and glutaraldehyde. The optimal conditions of enzyme immobilization were defined by a single factor experiment and response surface methodology (RSM). The concentration of the cross-linking agent glutaraldehyde was 0.46% (v/v), the cross-linking temperature was 25.0 °C, and the cross-linking time was 157 min. The enzyme activity of the immobilized KDN lipase after adsorption/cross-linking was 291.36 U/g, and the recovery of the enzyme activity was 9.90%. The optimal conditions for the synthesis of isopropyl myristate were catalyzed by the immobilized KDN lipase in a solvent-free system: immobilized enzyme 53 mg, reaction temperature 36.1 °C, myristic acid 228.4 mg, isopropanol 114 µL, and reaction time 18 h. The yield of isopropyl myristate was 66.62%. After ten cycles, the activity of the immobilized KDN lipase preserved more than 46.87% of its initial enzyme activity, and it demonstrated high tolerance to solvents compared to free KDN lipase.
Title: Immobilized KDN Lipase on Macroporous Resin for Isopropyl Myristate Synthesis
Description:
Free enzymes often face economic problems because of their non-repeatability and variability, which limit their application in industrial production.
In this study, KDN lipase was immobilized with the macroporous resin LXTE-1000 and glutaraldehyde.
The optimal conditions of enzyme immobilization were defined by a single factor experiment and response surface methodology (RSM).
The concentration of the cross-linking agent glutaraldehyde was 0.
46% (v/v), the cross-linking temperature was 25.
0 °C, and the cross-linking time was 157 min.
The enzyme activity of the immobilized KDN lipase after adsorption/cross-linking was 291.
36 U/g, and the recovery of the enzyme activity was 9.
90%.
The optimal conditions for the synthesis of isopropyl myristate were catalyzed by the immobilized KDN lipase in a solvent-free system: immobilized enzyme 53 mg, reaction temperature 36.
1 °C, myristic acid 228.
4 mg, isopropanol 114 µL, and reaction time 18 h.
The yield of isopropyl myristate was 66.
62%.
After ten cycles, the activity of the immobilized KDN lipase preserved more than 46.
87% of its initial enzyme activity, and it demonstrated high tolerance to solvents compared to free KDN lipase.
Related Results
PENGARUH PERIODE PEMANENAN RESIN DAMAR TERHADAP PENDAPATAN PETANI REPONG DAMAR DI PEKON LABUHAN MANDI PESISIR BARAT
PENGARUH PERIODE PEMANENAN RESIN DAMAR TERHADAP PENDAPATAN PETANI REPONG DAMAR DI PEKON LABUHAN MANDI PESISIR BARAT
Repong Damar is a plot of land planted with various types of productive plants from various types of timber with economic value. The term repong damar is because the plant that is ...
Production of Lipase Enzyme by Marine Actinobacteria With Various pH and Temperature
Production of Lipase Enzyme by Marine Actinobacteria With Various pH and Temperature
Abstract: The demand for enzymes as biocatalysts in industry is very high. Research and development of different types of enzymes from different sources has started. One very impor...
Lipase Induction in
Mucor hiemalis
Lipase Induction in
Mucor hiemalis
The influence on lipase induction in
Mucor hiemalis
of different types of triglycerides containing mainly oleic acid (olive oil), erucic acid (mustard oil),...
Activity and Stability of Lipases Immobilized onto Acetylated Bacterial Cellulose
Activity and Stability of Lipases Immobilized onto Acetylated Bacterial Cellulose
Bacterial cellulose (BC) materials were used for lipase immobilization to improve enzyme activity and stability. BC films produced by Komagataeibacter xylinus were first acetylated...
A unique approach to enhance catalytic performance of Lipase by in situ formation of silver nanoclusters
A unique approach to enhance catalytic performance of Lipase by in situ formation of silver nanoclusters
The purpose of this study was to design and engineer a simple approach
to enhance the catalytic activity and thermal stability of Lipase.
Lipase is an enzyme with exciting multifar...
Computational Assessment of Botrytis cinerea Lipase for Biofuel Production
Computational Assessment of Botrytis cinerea Lipase for Biofuel Production
The demand for ecofriendly green catalysts for biofuel synthesis is greatly increasing with the effects of fossil fuel depletion. Fungal lipases are abundantly used as biocatalysts...
Enhanced Performance of Immobilized Rhizopus oryzae Lipase on Coated Porous Polypropylene Support with Additives
Enhanced Performance of Immobilized Rhizopus oryzae Lipase on Coated Porous Polypropylene Support with Additives
The immobilization of Rhizopus oryzae lipase (RoL) by hydrophobic adsorption on polypropylene supports with additives was investigated. Additives such as hen egg albumin, sodium ca...
Pengaruh Edible Coating terhadap Stabilitas Warna Resin Akrilik
Pengaruh Edible Coating terhadap Stabilitas Warna Resin Akrilik
Abstract: Disadvantages of heat-polymerized acrylic resin as a denture base material are porosity and water absorption, which can cause aesthetic problems due to causing discolorat...

