Javascript must be enabled to continue!
Quantum Dot Temperature Sensor Ab Initio Test: Droplet Vaporization Heat Transfer
View through CrossRef
Better understanding of phase change phenomena can be obtained through local measurements of the heat transfer process, which can’t be attained by traditional thermocouple point measurements. Infrared (IR) technology, which has been used by many researchers in the past, cannot be used under certain circumstances due to spectral transparency issues present in some materials. In the current study, Quantum Dots (QDs) are proposed as a novel tool for heat transfer measurements. QDs are nano-sized semiconductor materials which fluoresce upon excitation by blue or UV light. The light intensity emitted by QDs drops with temperature, which can be utilized to obtain the surface temperature distribution at a camera pixel resolution. If QDs are distributed on a surface of interest and optical access to that surface is available, the heat transfer processes can be examined using inexpensive equipment such as CCD/CMOS cameras and LED excitation sources. In this paper, a description of a QD based technique is given, where it is applied to visualize the heat transfer associated with ethanol droplet evaporation.
American Society of Mechanical Engineers
Title: Quantum Dot Temperature Sensor Ab Initio Test: Droplet Vaporization Heat Transfer
Description:
Better understanding of phase change phenomena can be obtained through local measurements of the heat transfer process, which can’t be attained by traditional thermocouple point measurements.
Infrared (IR) technology, which has been used by many researchers in the past, cannot be used under certain circumstances due to spectral transparency issues present in some materials.
In the current study, Quantum Dots (QDs) are proposed as a novel tool for heat transfer measurements.
QDs are nano-sized semiconductor materials which fluoresce upon excitation by blue or UV light.
The light intensity emitted by QDs drops with temperature, which can be utilized to obtain the surface temperature distribution at a camera pixel resolution.
If QDs are distributed on a surface of interest and optical access to that surface is available, the heat transfer processes can be examined using inexpensive equipment such as CCD/CMOS cameras and LED excitation sources.
In this paper, a description of a QD based technique is given, where it is applied to visualize the heat transfer associated with ethanol droplet evaporation.
Related Results
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
The rapid expansion of the fintech sector has brought with it an increasing demand for robust and sophisticated fraud detection systems capable of managing large volumes of financi...
Dynamic stochastic modeling for inertial sensors
Dynamic stochastic modeling for inertial sensors
Es ampliamente conocido que los modelos de error para sensores inerciales tienen dos componentes: El primero es un componente determinista que normalmente es calibrado por el fabri...
Controlled production of double emulsion by microfluid technique
Controlled production of double emulsion by microfluid technique
All planned inertial confinement fusion (ICF) capsule targets except machined beryllium require plastic mandrels with tight requirements on which the ablator is built. In this pape...
Advancements in Quantum Computing and Information Science
Advancements in Quantum Computing and Information Science
Abstract: The chapter "Advancements in Quantum Computing and Information Science" explores the fundamental principles, historical development, and modern applications of quantum co...
Lattice Boltzmann simulation of droplet dynamics in a bifurcating micro-channel
Lattice Boltzmann simulation of droplet dynamics in a bifurcating micro-channel
The droplet dynamic in a bifurcating micro-channel, as one of the basic multiphase problems, is frequently encountered in the fields of science and engineering. Due to its great re...
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
The rapid advancements in artificial intelligence (AI) and quantum computing have catalyzed an unprecedented shift in the methodologies utilized for healthcare diagnostics and trea...
Current Fluctuations in Hybrid-Superconductor Normal Structures with Quantum Dots
Current Fluctuations in Hybrid-Superconductor Normal Structures with Quantum Dots
<p>Nanostructures with quantum dots in proximity to superconducting electrodes are an ideal tool to study superconducting correlations in systems with few degrees of freedom ...
Quantum information outside quantum information
Quantum information outside quantum information
Quantum theory, as counter-intuitive as a theory can get, has turned out to make predictions of the physical world that match observations so precisely that it has been described a...

