Javascript must be enabled to continue!
Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins
View through CrossRef
This work evaluates the influence of combining twisted fins in a triple-tube heat exchanger utilised for latent heat thermal energy storage (LHTES) in three-dimensional numerical simulation and comparing the outcome with the cases of the straight fins and no fins. The phase change material (PCM) is in the annulus between the inner and the outer tube, these tubes include a cold fluid that flows in the counter current path, to solidify the PCM and release the heat storage energy. The performance of the unit was assessed based on the liquid fraction and temperature profiles as well as solidification and the energy storage rate. This study aims to find suitable and efficient fins number and the optimum values of the Re and the inlet temperature of the heat transfer fluid. The outcomes stated the benefits of using twisted fins related to those cases of straight fins and the no-fins. The impact of multi-twisted fins was also considered to detect their influences on the solidification process. The outcomes reveal that the operation of four twisted fins decreased the solidification time by 12.7% and 22.9% compared with four straight fins and the no-fins cases, respectively. Four twisted fins improved the discharging rate by 12.4% and 22.8% compared with the cases of four straight fins and no-fins, respectively. Besides, by reducing the fins’ number from six to four and two, the solidification time reduces by 11.9% and 25.6%, respectively. The current work shows the impacts of innovative designs of fins in the LHTES to produce novel inventions for commercialisation, besides saving the power grid.
Title: Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins
Description:
This work evaluates the influence of combining twisted fins in a triple-tube heat exchanger utilised for latent heat thermal energy storage (LHTES) in three-dimensional numerical simulation and comparing the outcome with the cases of the straight fins and no fins.
The phase change material (PCM) is in the annulus between the inner and the outer tube, these tubes include a cold fluid that flows in the counter current path, to solidify the PCM and release the heat storage energy.
The performance of the unit was assessed based on the liquid fraction and temperature profiles as well as solidification and the energy storage rate.
This study aims to find suitable and efficient fins number and the optimum values of the Re and the inlet temperature of the heat transfer fluid.
The outcomes stated the benefits of using twisted fins related to those cases of straight fins and the no-fins.
The impact of multi-twisted fins was also considered to detect their influences on the solidification process.
The outcomes reveal that the operation of four twisted fins decreased the solidification time by 12.
7% and 22.
9% compared with four straight fins and the no-fins cases, respectively.
Four twisted fins improved the discharging rate by 12.
4% and 22.
8% compared with the cases of four straight fins and no-fins, respectively.
Besides, by reducing the fins’ number from six to four and two, the solidification time reduces by 11.
9% and 25.
6%, respectively.
The current work shows the impacts of innovative designs of fins in the LHTES to produce novel inventions for commercialisation, besides saving the power grid.
Related Results
Thermal energy storage with tunnels in different subsurface conditions
Thermal energy storage with tunnels in different subsurface conditions
The widespread use of the underground and global climate change impact the urban subsurface temperature. Changes in the subsurface environment can affect the performance of undergr...
Understanding multi-fin swimming and maneuvering to develop highly capable swimming robots
Understanding multi-fin swimming and maneuvering to develop highly capable swimming robots
Fish swim underwater with levels of agility and maneuverability that far exceed those of contemporary unmanned underwater vehicles (UUVs). While UUVs primarily rely on rectilinear ...
[RETRACTED] Rhino XL Male Enhancement v1
[RETRACTED] Rhino XL Male Enhancement v1
[RETRACTED]Rhino XL Reviews, NY USA: Studies show that testosterone levels in males decrease constantly with growing age. There are also many other problems that males face due ...
Melting Enhancement in a Triple-Tube Latent Heat Storage System with Sloped Fins
Melting Enhancement in a Triple-Tube Latent Heat Storage System with Sloped Fins
Due to the potential cost saving and minimal temperature stratification, the energy storage based on phase-change materials (PCMs) can be a reliable approach for decoupling energy ...
Switching control strategy for an energy storage system based on multi-level logic judgment
Switching control strategy for an energy storage system based on multi-level logic judgment
Energy storage is a new, flexibly adjusting resource with prospects for broad application in power systems with high proportions of renewable energy integration. However, energy st...
Average Wall Radiative Heat Transfer Characteristic of Isothermal Radiative Medium in Inner Straight Fin Tubes
Average Wall Radiative Heat Transfer Characteristic of Isothermal Radiative Medium in Inner Straight Fin Tubes
Abstract
Wall radiative heat transfer in inner straight fin tubes is very complex considering the coupling of heat conduction in fins and radiative heat transfer of ...
Epidemiological, diagnostic and medical-social aspects of latent syphilis
Epidemiological, diagnostic and medical-social aspects of latent syphilis
Objective — to study epidemiological, clinical and medical-social aspects of latent syphilis in Ukraine over the past 40 years.
Materials and methods. Data of patients with latent ...
Incorporating phase change materials in geothermal energy piles for thermal energy storage
Incorporating phase change materials in geothermal energy piles for thermal energy storage
Introduction
Geothermal energy piles (GEPs) are foundation elements that are installed in the ground to support the weight of the building to a competent strata. Energy loops...


