Javascript must be enabled to continue!
An improved Coati Optimization Algorithm with multiple strategies for engineering design optimization problems
View through CrossRef
AbstractAiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall into local extreme value, resulting in slow convergence and lack of exploration ability; In this paper, an improved COA algorithm based on chaotic sequence, nonlinear inertia weight, adaptive T-distribution variation strategy and alert updating strategy is proposed to enhance the performance of COA (shorted as TNTWCOA). The algorithm introduces chaotic sequence mechanism to initialize the position. The position distribution of the initial solution is more uniform, the high quality initial solution is generated, the population richness is increased, and the problem of poor quality and uneven initial solution of the Coati Optimization Algorithm is solved. In exploration phase, the nonlinear inertial weight factor is introduced to coordinate the local optimization ability and global search ability of the algorithm. In the exploitation phase, adaptive T-distribution variation is introduced to increase the diversity of individual population under low fitness value and improve the ability of the algorithm to jump out of the local optimal value. At the same time, the alert update mechanism is proposed to improve the alert ability of COA algorithm, so that it can search within the optional range. When Coati is aware of the danger, Coati on the edge of the population will quickly move to the safe area to obtain a better position, while Coati in the middle of the population will randomly move to get closer to other Coatis. IEEE CEC2017 with 29 classic test functions were used to evaluate the convergence speed, convergence accuracy and other indicators of TNTWCOA algorithm. Meanwhile, TNTWCOA was used to verify 4 engineering design optimization problems, such as pressure vessel optimization design and welding beam design. The results of IEEE CEC2017 and engineering design Optimization problems are compared with Improved Coati Optimization Algorithm (ICOA), Coati Optimization Algorithm (COA), Golden Jackal Optimization Algorithm (GJO), Osprey Optimization Algorithm (OOA), Sand Cat Swarm Optimization Algorithm (SCSO), Subtraction-Average-Based Optimizer (SABO). The experimental results show that the improved TNTWCOA algorithm significantly improves the convergence speed and optimization accuracy, and has good robustness. Three‑bar truss design problem, The Gear Train Design Problem, Speed reducer design problem shows a strong solution advantage. The superior optimization ability and engineering practicability of TNTWCOA algorithm are verified.
Springer Science and Business Media LLC
Title: An improved Coati Optimization Algorithm with multiple strategies for engineering design optimization problems
Description:
AbstractAiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall into local extreme value, resulting in slow convergence and lack of exploration ability; In this paper, an improved COA algorithm based on chaotic sequence, nonlinear inertia weight, adaptive T-distribution variation strategy and alert updating strategy is proposed to enhance the performance of COA (shorted as TNTWCOA).
The algorithm introduces chaotic sequence mechanism to initialize the position.
The position distribution of the initial solution is more uniform, the high quality initial solution is generated, the population richness is increased, and the problem of poor quality and uneven initial solution of the Coati Optimization Algorithm is solved.
In exploration phase, the nonlinear inertial weight factor is introduced to coordinate the local optimization ability and global search ability of the algorithm.
In the exploitation phase, adaptive T-distribution variation is introduced to increase the diversity of individual population under low fitness value and improve the ability of the algorithm to jump out of the local optimal value.
At the same time, the alert update mechanism is proposed to improve the alert ability of COA algorithm, so that it can search within the optional range.
When Coati is aware of the danger, Coati on the edge of the population will quickly move to the safe area to obtain a better position, while Coati in the middle of the population will randomly move to get closer to other Coatis.
IEEE CEC2017 with 29 classic test functions were used to evaluate the convergence speed, convergence accuracy and other indicators of TNTWCOA algorithm.
Meanwhile, TNTWCOA was used to verify 4 engineering design optimization problems, such as pressure vessel optimization design and welding beam design.
The results of IEEE CEC2017 and engineering design Optimization problems are compared with Improved Coati Optimization Algorithm (ICOA), Coati Optimization Algorithm (COA), Golden Jackal Optimization Algorithm (GJO), Osprey Optimization Algorithm (OOA), Sand Cat Swarm Optimization Algorithm (SCSO), Subtraction-Average-Based Optimizer (SABO).
The experimental results show that the improved TNTWCOA algorithm significantly improves the convergence speed and optimization accuracy, and has good robustness.
Three‑bar truss design problem, The Gear Train Design Problem, Speed reducer design problem shows a strong solution advantage.
The superior optimization ability and engineering practicability of TNTWCOA algorithm are verified.
Related Results
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Abstarct
Introduction
Isolated brain hydatid disease (BHD) is an extremely rare form of echinococcosis. A prompt and timely diagnosis is a crucial step in disease management. This ...
Modeling Hybrid Metaheuristic Optimization Algorithm for Convergence Prediction
Modeling Hybrid Metaheuristic Optimization Algorithm for Convergence Prediction
The project aims at the design and development of six hybrid nature inspired algorithms based on Grey Wolf Optimization algorithm with Artificial Bee Colony Optimization algorithm ...
Modeling Hybrid Metaheuristic Optimization Algorithm for Convergence Prediction
Modeling Hybrid Metaheuristic Optimization Algorithm for Convergence Prediction
The project aims at the design and development of six hybrid nature inspired algorithms based on Grey Wolf Optimization algorithm with Artificial Bee Colony Optimization algorithm ...
A new type bionic global optimization: Construction and application of modified fruit fly optimization algorithm
A new type bionic global optimization: Construction and application of modified fruit fly optimization algorithm
Fruit fly optimization algorithm, which is put forward through research on the act of foraging and observing groups of fruit flies, has some merits such as simplified operation, st...
Lévy flight trajectory-based whale optimization algorithm for engineering optimization
Lévy flight trajectory-based whale optimization algorithm for engineering optimization
Purpose
This paper aims to represent an improved whale optimization algorithm (WOA) based on a Lévy flight trajectory and called the LWOA algorithm to solve engineering optimizatio...
Constrained optimization of engineering design problems: Analyses with Gauss map-based chaotic particle swarm optimization
Constrained optimization of engineering design problems: Analyses with Gauss map-based chaotic particle swarm optimization
Constrained optimization rises as a challenging issue concerning the evaluation of restrictions, objective and constraints of a model. For this purpose, various optimization algori...
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Abstract
The Physical Activity Guidelines for Americans (Guidelines) advises older adults to be as active as possible. Yet, despite the well documented benefits of physical a...


