Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Diffusion Counterfactuals for Image Regressors

View through CrossRef
Abstract Counterfactual explanations have been successfully applied to create human interpretable explanations for various black-box models. They are handy for tasks in the image domain, where the quality of the explanations benefits from recent advances in generative models. Although counterfactual explanations have been widely applied to classification models, their application to regression tasks remains underexplored. We present two methods to create counterfactual explanations for image regression tasks using diffusion-based generative models to address challenges in sparsity and quality: 1) one based on a Denoising Diffusion Probabilistic Model that operates directly in pixel-space and 2) another based on a Diffusion Autoencoder operating in latent space. Both produce realistic, semantic, and smooth counterfactuals on CelebA-HQ and a synthetic data set, providing easily interpretable insights into the decision-making process of the regression model and reveal spurious correlations. We find that for regression counterfactuals, changes in features depend on the region of the predicted value. Large semantic changes are needed for significant changes in predicted values, making it harder to find sparse counterfactuals than with classifiers. Moreover, pixel space counterfactuals are more sparse while latent space counterfactuals are of higher quality and allow bigger semantic changes.
Title: Diffusion Counterfactuals for Image Regressors
Description:
Abstract Counterfactual explanations have been successfully applied to create human interpretable explanations for various black-box models.
They are handy for tasks in the image domain, where the quality of the explanations benefits from recent advances in generative models.
Although counterfactual explanations have been widely applied to classification models, their application to regression tasks remains underexplored.
We present two methods to create counterfactual explanations for image regression tasks using diffusion-based generative models to address challenges in sparsity and quality: 1) one based on a Denoising Diffusion Probabilistic Model that operates directly in pixel-space and 2) another based on a Diffusion Autoencoder operating in latent space.
Both produce realistic, semantic, and smooth counterfactuals on CelebA-HQ and a synthetic data set, providing easily interpretable insights into the decision-making process of the regression model and reveal spurious correlations.
We find that for regression counterfactuals, changes in features depend on the region of the predicted value.
Large semantic changes are needed for significant changes in predicted values, making it harder to find sparse counterfactuals than with classifiers.
Moreover, pixel space counterfactuals are more sparse while latent space counterfactuals are of higher quality and allow bigger semantic changes.

Related Results

Comment on: Macroscopic water vapor diffusion is not enhanced in snow
Comment on: Macroscopic water vapor diffusion is not enhanced in snow
Abstract. The central thesis of the authors’ paper is that macroscopic water vapor diffusion is not enhanced in snow compared to diffusion through humid air alone. Further, mass di...
Double Exposure
Double Exposure
I. Happy Endings Chaplin’s Modern Times features one of the most subtly strange endings in Hollywood history. It concludes with the Tramp (Chaplin) and the Gamin (Paulette Godda...
Cultural Diffusion in Modern Cultural Discourse
Cultural Diffusion in Modern Cultural Discourse
The purpose of the article is to reveal the peculiarities of cultural diffusion as a phenomenon of the sociocultural space based on the analysis of the cultural discourse of the fi...
Back to the Present: How Not to Use Counterfactuals to Explain Causal Asymmetry
Back to the Present: How Not to Use Counterfactuals to Explain Causal Asymmetry
A plausible thought is that we should evaluate counterfactuals in the actual world by holding the present ‘fixed’; the state of the counterfactual world at the time of the antecede...
The effect of vacancy on the interfacial diffusion in Cu/Sn lead-free solder joints
The effect of vacancy on the interfacial diffusion in Cu/Sn lead-free solder joints
Purpose The purpose of this paper is to investigate the diffusion behaviors of different atoms at the Cu/Cu3Sn interface and the vacancy formation energy, diffusion energy barrier ...
Isotopic diffusion in ice enhanced by vein-water flow
Isotopic diffusion in ice enhanced by vein-water flow
Abstract. Diffusive smoothing of signals on the water stable isotopes (18O and D) in ice sheets fundamentally limits the climatic information retrievable from these ice-core proxie...
Latest advancement in image processing techniques
Latest advancement in image processing techniques
Image processing is method of performing some operations on an image, for enhancing the image or for getting some information from that image, or for some other applications is not...
A diffusion approach to study leadership reform
A diffusion approach to study leadership reform
PurposeThis study aims to draw on elements of diffusion theory to understand leadership reform. Many diffusion studies examine the spread of an innovation across social units but t...

Back to Top