Javascript must be enabled to continue!
Constraints on the Petrogenesis and Metallogenic Setting of Lamprophyres in the World-Class Zhuxi W–Cu Skarn Deposit, South China
View through CrossRef
Whole-rock and apatite geochemical analyses and zircon U–Pb dating were carried out on the lamprophyres in the world-class Zhuxi W–Cu skarn deposit in northern Jiangxi, South China, in order to understand their origin of mantle sources and their relationship with the deposit, as well as metallogenic setting. The results show the lamprophyres were formed at ca. 157 Ma, just before the granite magmatism and mineralization of the Zhuxi deposit. These lamprophyres have from 58.98–60.76 wt% SiO2, 2.52–4.96 wt% K2O, 5.92–6.41 wt% Fe2O3t, 3.75–4.19 wt% MgO, and 3.61–5.06 wt% CaO, and enrichment of light rare earth elements (LREE) and large-ion lithophile elements (LILE), and depletion of high-field-strength elements (HFSE). Apatites in the lamprophyres are enriched in LREE and LILE, Sr, S, and Cl, and have 87Sr/86Sr ratios ranging from 0.7076 to 0.7078. The conclusions demonstrate that the lithospheric mantle under the Zhuxi deposit was metasomatized during Neoproterozoic subduction. Late Jurassic crustal extension caused upwelling of the asthenospheric mantle and consecutively melted the enriched lithospheric mantle and then crustal basement, corresponding to the formation of lamprophyres and mineralization-related granites in the Zhuxi deposit, respectively.
Title: Constraints on the Petrogenesis and Metallogenic Setting of Lamprophyres in the World-Class Zhuxi W–Cu Skarn Deposit, South China
Description:
Whole-rock and apatite geochemical analyses and zircon U–Pb dating were carried out on the lamprophyres in the world-class Zhuxi W–Cu skarn deposit in northern Jiangxi, South China, in order to understand their origin of mantle sources and their relationship with the deposit, as well as metallogenic setting.
The results show the lamprophyres were formed at ca.
157 Ma, just before the granite magmatism and mineralization of the Zhuxi deposit.
These lamprophyres have from 58.
98–60.
76 wt% SiO2, 2.
52–4.
96 wt% K2O, 5.
92–6.
41 wt% Fe2O3t, 3.
75–4.
19 wt% MgO, and 3.
61–5.
06 wt% CaO, and enrichment of light rare earth elements (LREE) and large-ion lithophile elements (LILE), and depletion of high-field-strength elements (HFSE).
Apatites in the lamprophyres are enriched in LREE and LILE, Sr, S, and Cl, and have 87Sr/86Sr ratios ranging from 0.
7076 to 0.
7078.
The conclusions demonstrate that the lithospheric mantle under the Zhuxi deposit was metasomatized during Neoproterozoic subduction.
Late Jurassic crustal extension caused upwelling of the asthenospheric mantle and consecutively melted the enriched lithospheric mantle and then crustal basement, corresponding to the formation of lamprophyres and mineralization-related granites in the Zhuxi deposit, respectively.
Related Results
Chapter 6 Skarn Deposits of China
Chapter 6 Skarn Deposits of China
Abstract
Skarn deposits are one of the most common deposit types in China. The 386 skarns summarized in this review contain ~8.9 million tonnes (Mt) Sn (87% of China...
Composite Metallogenic Systems in the Weihai Area of Shandong and Evolution of Continental Dynamic Regimes
Composite Metallogenic Systems in the Weihai Area of Shandong and Evolution of Continental Dynamic Regimes
Abstract: Based on 9 sheets of l:50,000‐scale regional geological survey and guided by the theory of metallogenic systems and integrated analyses of the structural and metallogenic...
Phlogopite 40Ar/39Ar Geochronology for Guodian Skarn Fe Deposit in Qihe–Yucheng District, Luxi Block, North China Craton: A Link between Craton Destruction and Fe Mineralization
Phlogopite 40Ar/39Ar Geochronology for Guodian Skarn Fe Deposit in Qihe–Yucheng District, Luxi Block, North China Craton: A Link between Craton Destruction and Fe Mineralization
The Guodian Fe deposit is representative of the newly discovered Qihe–Yucheng high-grade Fe skarn ore cluster, Luxi Block, eastern North China Craton (NCC). The age of the Pandian ...
Petrogenesis of Scheelite-Bearing Albitite as an Indicator for the Formation of a World-Class Scheelite Skarn Deposit: A Case Study of the Zhuxi Tungsten Deposit
Petrogenesis of Scheelite-Bearing Albitite as an Indicator for the Formation of a World-Class Scheelite Skarn Deposit: A Case Study of the Zhuxi Tungsten Deposit
Abstract
Scheelite-bearing albitite is present in the form of rare, highly fractionated felsic dikes in the world-class Zhuxi tungsten deposit. Morphologically, the ...
Scheelite U-Pb geochronology and trace element geochemistry fingerprint W mineralization in the giant Zhuxi W deposit, South China
Scheelite U-Pb geochronology and trace element geochemistry fingerprint W mineralization in the giant Zhuxi W deposit, South China
Abstract
Skarn-type tungsten deposits are widely distributed all over the world and contribute more than 70% of the world’s W supply. The temporal relation between t...
Study on the freeze-thaw damage characteristics of skarn based on CT three-dimensional reconstruction
Study on the freeze-thaw damage characteristics of skarn based on CT three-dimensional reconstruction
To study the mesoscopic damage evolution characteristics of skarn under freeze-thaw cycles, based on CT technology, the skarn samples under freeze-thaw action were scanned by CT, a...
Benchmarking Bayesian methods for spectroscopy
Benchmarking Bayesian methods for spectroscopy
<p class="p1"><span class="s1"><strong>Introduction:</strong></span>&l...
Physicochemical constraints and fluid evolution pathways in skarn mineralization: insights from sphalerite geochemistry at the Dafang Pb–Zn–Au–Ag deposit, South China
Physicochemical constraints and fluid evolution pathways in skarn mineralization: insights from sphalerite geochemistry at the Dafang Pb–Zn–Au–Ag deposit, South China
Important Mid-Late Jurassic Pb–Zn polymetallic skarn deposits are widely distributed in South China, yet physiochemical conditions and migration of the ore-forming fluids in skarn ...


