Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Improvement of Calcium Aluminate Cement Containing Blast Furnace Slag at 50°C and 315°C

View through CrossRef
During the thermal recovery of heavy oil thermal recovery wells, improving the mechanical properties and integrity of the cement ring is of great significance for the safe and efficient exploitation of heavy oil resources. This paper studies the relative properties of calcium aluminate cement and three kinds of slags under the conditions of 50°C × 1.01 MPa and 315°C × 20.7 MPa. CAC-slag composite material performance was evaluated using the cement paste compressive strength and permeability tests to study the physical properties of CAC with blast furnace slag. X-ray diffraction analysis, scanning electron microscopy (SEM), and thermal analysis (DSC/TG) were carried out to investigate the mineralogical composition of CAC with blast furnace slag. Results show that adding blast furnace slag did not affect the performance of cement slurry. Moreover, C2ASH8 curing occurred at low temperature, the microstructure of CAC paste was compact, and the permeability resistance was improved, thus improving the low-temperature properties of neat CAC. When cured at a high temperature, the CAC paste was mainly hydrated with C3ASH4 and AlO(OH), which had a well-developed crystal structure. Adding blast furnace slag can improve the CAC resistance to high temperature.
Title: Improvement of Calcium Aluminate Cement Containing Blast Furnace Slag at 50°C and 315°C
Description:
During the thermal recovery of heavy oil thermal recovery wells, improving the mechanical properties and integrity of the cement ring is of great significance for the safe and efficient exploitation of heavy oil resources.
This paper studies the relative properties of calcium aluminate cement and three kinds of slags under the conditions of 50°C × 1.
01 MPa and 315°C × 20.
7 MPa.
CAC-slag composite material performance was evaluated using the cement paste compressive strength and permeability tests to study the physical properties of CAC with blast furnace slag.
X-ray diffraction analysis, scanning electron microscopy (SEM), and thermal analysis (DSC/TG) were carried out to investigate the mineralogical composition of CAC with blast furnace slag.
Results show that adding blast furnace slag did not affect the performance of cement slurry.
Moreover, C2ASH8 curing occurred at low temperature, the microstructure of CAC paste was compact, and the permeability resistance was improved, thus improving the low-temperature properties of neat CAC.
When cured at a high temperature, the CAC paste was mainly hydrated with C3ASH4 and AlO(OH), which had a well-developed crystal structure.
Adding blast furnace slag can improve the CAC resistance to high temperature.

Related Results

The cement-bone bond is weaker than cement-cement bond in cement-in-cement revision arthroplasty. A comparative biomechanical study
The cement-bone bond is weaker than cement-cement bond in cement-in-cement revision arthroplasty. A comparative biomechanical study
This study compares the strength of the native bone-cement bond and the old-new cement bond under cyclic loading, using third generation cementing technique, rasping and contaminat...
Real-Time Distributed Fiber Optic Sensing for Cement Sheath Integrity Monitoring
Real-Time Distributed Fiber Optic Sensing for Cement Sheath Integrity Monitoring
ABSTRACT: The integrity of cement sheath is critical to oil and gas effective extraction, in which the cement displacement efficiency and solidify quality are the...
FLY ASH FOUNDATION REINFORCED BY CEMENT–SOIL MIXING PILES
FLY ASH FOUNDATION REINFORCED BY CEMENT–SOIL MIXING PILES
Cement-soil mixing piles have been commonly used to enhance the bearing capacity of fly ash stratum and mitigate the settlement damage to the surrounding environment. However, only...
Peak Particle Velocity for Blasting Rock Modeling
Peak Particle Velocity for Blasting Rock Modeling
ABSTRACT Blasting mechanisms are a complex coupling of the rock mass properties and the explosive detonation performance as well as the blast design parameters. B...
Phase Equilibrium Studies of the CaO-MgO-Al2O3-SiO2 System for Iron Blast Furnace Slag: A Review
Phase Equilibrium Studies of the CaO-MgO-Al2O3-SiO2 System for Iron Blast Furnace Slag: A Review
More and larger blast furnaces have been constructed for ironmaking across the world in recent years due to the advantages of high productivity, high energy efficiency and low cost...
Cement Evaluation - A Risky Business
Cement Evaluation - A Risky Business
Abstract Cement evaluation is commonly thought of as running a cement bond log (CBL) and attempting to interpret the results to determine if there is isolation in th...
Study on cementitious properties of steel slag
Study on cementitious properties of steel slag
The converter steel slag chemical and mineral components in China?s main steel plants have been analysed in the present paper. The electronic microscope, energy spectrum anal...
Experiment Study of Stress and Pore Pressure in Setting Cement Paste
Experiment Study of Stress and Pore Pressure in Setting Cement Paste
ABSTRACT: Cement sheath integrity plays an important role in ensuring the wellbore safety. Shear failure, tensile crack or debonding may happen in the cement shea...

Back to Top