Javascript must be enabled to continue!
Ultrasensitive optical biosensor for detection of miRNA-155 using positively charged Au nanoparticles
View through CrossRef
AbstractAn ultrasensitive optical biosensor for microRNA-155 (miR-155) was developed to diagnose breast cancer at early stages. At first, the probe DNA covalently bind to the negatively charged gold nanoparticles (citrate-capped AuNPs). Then, the target miR-155 electrostatically adsorb onto the positively charged gold nanoparticles (polyethylenimine-capped AuNP) surface. Finally, by mixing citrate-capped AuNP/probe and polyethylenimine-capped AuNP/miR-155, hybridization occurs and the optical signal of the mixture give a measure to quantify the miR-155 content. The proposed biosensor is able to specify 3-base-pair mismatches and genomic DNA from target miR-155. The novelty of this biosensor is in its ability to trap the label-free target by its branched positively charged polyethylenimine. This method increases loading the target on the polyethylenimine-capped AuNPs’ surface. So, proposed sensor enables miR-155 detection at very low concentrations with the detection limit of 100 aM and a wide linear range from 100 aM to 100 fM.
Springer Science and Business Media LLC
Title: Ultrasensitive optical biosensor for detection of miRNA-155 using positively charged Au nanoparticles
Description:
AbstractAn ultrasensitive optical biosensor for microRNA-155 (miR-155) was developed to diagnose breast cancer at early stages.
At first, the probe DNA covalently bind to the negatively charged gold nanoparticles (citrate-capped AuNPs).
Then, the target miR-155 electrostatically adsorb onto the positively charged gold nanoparticles (polyethylenimine-capped AuNP) surface.
Finally, by mixing citrate-capped AuNP/probe and polyethylenimine-capped AuNP/miR-155, hybridization occurs and the optical signal of the mixture give a measure to quantify the miR-155 content.
The proposed biosensor is able to specify 3-base-pair mismatches and genomic DNA from target miR-155.
The novelty of this biosensor is in its ability to trap the label-free target by its branched positively charged polyethylenimine.
This method increases loading the target on the polyethylenimine-capped AuNPs’ surface.
So, proposed sensor enables miR-155 detection at very low concentrations with the detection limit of 100 aM and a wide linear range from 100 aM to 100 fM.
Related Results
Slower Engraftment in Patients with High Expression of miRNA-15a, miRNA-16, miRNA-126, miRNA-146a, miRNA-223 Prior to Autologous Stem Cell Transplantation and at Early Time after Transplantation
Slower Engraftment in Patients with High Expression of miRNA-15a, miRNA-16, miRNA-126, miRNA-146a, miRNA-223 Prior to Autologous Stem Cell Transplantation and at Early Time after Transplantation
Abstract
Introduction
MicroRNAs are a class of small (19-25 nucleotides), endogenous RNA which play a significant role in regulation of gene expressio...
Transforming growth factor-beta and microRNA-21, microRNA-29b, microRNA-92, and microRNA-129 in systemic sclerosis patients
Transforming growth factor-beta and microRNA-21, microRNA-29b, microRNA-92, and microRNA-129 in systemic sclerosis patients
Background
Systemic sclerosis is characterized by extracellular matrix overproduction by activated fibroblasts. It was reported that microRNAs (miRNAs) participate in t...
Antimicrobial activity of ciprofloxacin-coated gold nanoparticles on selected pathogens
Antimicrobial activity of ciprofloxacin-coated gold nanoparticles on selected pathogens
Antibiotic resistance amongst bacterial pathogens is a crisis that has been worsening over recent decades, resulting in serious and often fatal infections that cannot be treated by...
miRNA-146-a, miRNA-21, miRNA-143, miRNA-29-b and miRNA-223 as Potential Biomarkers for Atopic Dermatitis
miRNA-146-a, miRNA-21, miRNA-143, miRNA-29-b and miRNA-223 as Potential Biomarkers for Atopic Dermatitis
Background/Objectives: Recently, epigenetic mechanisms have been recognized as crucial in atopic dermatitis development. The emphasis of this research was on ex-panding existing kn...
Molecular Characterization in 3D Structure of MicroRNA Expressed in Leprosy
Molecular Characterization in 3D Structure of MicroRNA Expressed in Leprosy
ABSTRACTIntroductionHansen’s disease, or leprosy, is a major public health problem in developing countries, caused by Mycobacterium leprae, and affecting the skin and peripheral ne...
Exploring miRNA Sponge Networks of Breast Cancer by Combining miRNA-disease-lncRNA and miRNA-target Networks
Exploring miRNA Sponge Networks of Breast Cancer by Combining miRNA-disease-lncRNA and miRNA-target Networks
Background:
Recently, ample researches show that microRNAs (miRNAs) not only
interact with coding genes but interact with a pool of different RNAs. Those RNAs are called
miRNA spon...
Preliminary study on miRNA in prostate cancer
Preliminary study on miRNA in prostate cancer
Abstract
Objective
To screen for miRNAs differentially expressed in prostate cancer and prostate hyperplasia tissues and to validate their association with prostate cancer...
Evaluation of microRNA Gene Polymorphisms in Liver Transplant Patients with Hepatocellular Carcinoma
Evaluation of microRNA Gene Polymorphisms in Liver Transplant Patients with Hepatocellular Carcinoma
Background: Genetic polymorphism in the miRNA sequence might alter miRNA expression and/or maturation, which is associated with the development and progression of hepatocellular ca...

