Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

High intensity ignimbritic activity in the Central sector of the Main Ethiopian Rift

View through CrossRef
<p>The volcano-tectonic evolution of the Main Ethiopian Rift (MER) is punctuated with periods of intense silicic volcanism, characterized by large explosive caldera-forming eruptions and the production of several ignimbrite deposits. These volcanic paroxysms require large volume of evolved silicic magma accumulated in shallow chambers into the continental crust; however, the relations between magmatism and tectonics during rifting, and the influence of the distribution and timing of regional tectonics on the ascent of magma and its stalling in large magmatic reservoirs remain poorly defined.</p><p>We present new geochronological data (<sup>40</sup>Ar/<sup>39</sup>Ar dataset of 29 samples) providing new constraints on the timing, evolution and characteristics of volcanism in the Central sector of the MER, where large ignimbrite deposits and remnants of several calderas testify the recurrence of silicic flare-ups. Specifically, we investigate in detail the eastern margin of the rift, where a voluminous, widespread, crystal-rich ignimbrite (Munesa Crystal Tuff, MCT) has been described. This deposit has been correlated to a thick ignimbrite occurring at the bottom of geothermal wells in the rift, pointing to a giant eruptive event attributed to a huge caldera structure, presumably buried beneath the rift floor. At least other two widespread ignimbrite units are present along the same margin for several tens of kilometres, testifying the high volcanicity of this sector of the MER.</p><p>Our survey and analyses suggest that, at least in the eastern margin of the rift, activity was clustered in periods of large magma production and emission, resulting in the recurrence of intense volcanic phases interspersed with periods of rest of volcanism. Ignimbrites and other volcanic deposits occur in the investigated area, spanning an age interval from 3.5 Ma to as recent as 150 ka. The MCT emission, around 3.5 Ma, was followed, after a long quiescence, by an important phase with the emplacement of both mafic (lava flows and scoria cone) and evolved (ignimbrites) products between 1.9-1.6 Ma. After that, volcanism occurred more frequently, possibly with a lower amount of erupted magma and still alternating with quiescent periods, with volcanism clusters at ~ 1.3-1.2 Ma, ~ 0.8-0.7 Ma and ~ 0.3-0.2 Ma. This clustered volcanic activity will be compared with the episodic rifting of this sector of the Main Ethiopian Rift.</p>
Title: High intensity ignimbritic activity in the Central sector of the Main Ethiopian Rift
Description:
<p>The volcano-tectonic evolution of the Main Ethiopian Rift (MER) is punctuated with periods of intense silicic volcanism, characterized by large explosive caldera-forming eruptions and the production of several ignimbrite deposits.
These volcanic paroxysms require large volume of evolved silicic magma accumulated in shallow chambers into the continental crust; however, the relations between magmatism and tectonics during rifting, and the influence of the distribution and timing of regional tectonics on the ascent of magma and its stalling in large magmatic reservoirs remain poorly defined.
</p><p>We present new geochronological data (<sup>40</sup>Ar/<sup>39</sup>Ar dataset of 29 samples) providing new constraints on the timing, evolution and characteristics of volcanism in the Central sector of the MER, where large ignimbrite deposits and remnants of several calderas testify the recurrence of silicic flare-ups.
Specifically, we investigate in detail the eastern margin of the rift, where a voluminous, widespread, crystal-rich ignimbrite (Munesa Crystal Tuff, MCT) has been described.
This deposit has been correlated to a thick ignimbrite occurring at the bottom of geothermal wells in the rift, pointing to a giant eruptive event attributed to a huge caldera structure, presumably buried beneath the rift floor.
At least other two widespread ignimbrite units are present along the same margin for several tens of kilometres, testifying the high volcanicity of this sector of the MER.
</p><p>Our survey and analyses suggest that, at least in the eastern margin of the rift, activity was clustered in periods of large magma production and emission, resulting in the recurrence of intense volcanic phases interspersed with periods of rest of volcanism.
Ignimbrites and other volcanic deposits occur in the investigated area, spanning an age interval from 3.
5 Ma to as recent as 150 ka.
The MCT emission, around 3.
5 Ma, was followed, after a long quiescence, by an important phase with the emplacement of both mafic (lava flows and scoria cone) and evolved (ignimbrites) products between 1.
9-1.
6 Ma.
After that, volcanism occurred more frequently, possibly with a lower amount of erupted magma and still alternating with quiescent periods, with volcanism clusters at ~ 1.
3-1.
2 Ma, ~ 0.
8-0.
7 Ma and ~ 0.
3-0.
2 Ma.
This clustered volcanic activity will be compared with the episodic rifting of this sector of the Main Ethiopian Rift.
</p>.

Related Results

Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Abstract The Physical Activity Guidelines for Americans (Guidelines) advises older adults to be as active as possible. Yet, despite the well documented benefits of physical a...
Early onshore basaltic alteration and its natural hydrogen potential in the Asal–Ghoubbet rift, Republic of Djibouti.
Early onshore basaltic alteration and its natural hydrogen potential in the Asal–Ghoubbet rift, Republic of Djibouti.
The East African Rift (EAR) is a large opening system that allows the observation of all stages of rift evolution from continental opening in the south to oceanization in the north...
The Peculiar Case of Extensional Tectonics on Venus: Modes of RIfting and Activity
The Peculiar Case of Extensional Tectonics on Venus: Modes of RIfting and Activity
Venus’ geological history holds critical insights into why Venus and Earth, despite their similarities, have followed such divergent evolutionary paths. Recent discoverie...
Crustal softening at propagating rift tips, East Africa
Crustal softening at propagating rift tips, East Africa
We investigate the upper-crustal structure of the Rukwa-Tanganyika Rift Zone, East Africa, where earthquakes anomalously cluster at the northwestern tip of the Rukwa Rift, the east...
The Paleogene Tectonostratigraphy Of Northern Part Masalima Trench Basin
The Paleogene Tectonostratigraphy Of Northern Part Masalima Trench Basin
Northern part of Masalima Trench Basin is located in the southern part of the Strait of Makassar, which includes Masalima Trough and Massalima High. The area of research is an exte...
Spatio-temporal evolution of rift volcanism driven by progressive crustal unloading
Spatio-temporal evolution of rift volcanism driven by progressive crustal unloading
<div> <div> <div> <div> <p>Continental rifting can be accompanied by a large amount of volcanism, which is oft...
Evolution of Icelandic rift zones geometry as result of MOR-plume interaction
Evolution of Icelandic rift zones geometry as result of MOR-plume interaction
Rift zones of Iceland large igneous province (LIP) have complicated interior geometric pattern expressing in several parallel extension centers. It significantly differs from adjac...

Back to Top