Javascript must be enabled to continue!
Bayesian-based Saliency Model for Liver Tumor Enhancement
View through CrossRef
Automatic tumor enhancement and detection has an essential role for the computer-aided diagnosis of liver tumor in CT volume data. This paper proposes a novel tumor enhancement strategy by extracting a tumor saliency map, which represents the uncommon or tumor tissue compared to the liver and vessel ones in CT volumes. The saliency map can be constructed by exploring the existing probability of tumor in any voxel. However, the tumor prototypes in a test liver volume from a specific patient or common tumor prototypes are extremely difficult to achieve due to requirement of full-searching and large variation of tumor tissues in different liver volumes. Therefore, this paper investigates a tumor-training-data free strategy by only constructing the common healthy liver and vessel prototypes, which can be extracted from any slice of a liver volume, and then applies a nonparametric Bayesian framework for calculating the existing probability of liver or vessel. Finally, the existing probability of tumor can be deduced from that of liver or vessel. The advantages of our proposed strategy mainly include three aspects: (1) it only needs to construct the prototypes of common tissue such as liver or vessel region, which are easily obtained in any liver volume; (2) it proposes an adaptive non-parametric framework for tumor enhancement, which does not need to learn a common classification model for all liver volumes; (3) dispensable to remove the other different structure such as vessel in liver volume as a pre-processing step. Experiments validate that the proposed Bayesian-based saliency model for liver tumor enhancement can perform much better than the conventional approaches such as EM, EM/MPM tumor segmentation methods.
Title: Bayesian-based Saliency Model for Liver Tumor Enhancement
Description:
Automatic tumor enhancement and detection has an essential role for the computer-aided diagnosis of liver tumor in CT volume data.
This paper proposes a novel tumor enhancement strategy by extracting a tumor saliency map, which represents the uncommon or tumor tissue compared to the liver and vessel ones in CT volumes.
The saliency map can be constructed by exploring the existing probability of tumor in any voxel.
However, the tumor prototypes in a test liver volume from a specific patient or common tumor prototypes are extremely difficult to achieve due to requirement of full-searching and large variation of tumor tissues in different liver volumes.
Therefore, this paper investigates a tumor-training-data free strategy by only constructing the common healthy liver and vessel prototypes, which can be extracted from any slice of a liver volume, and then applies a nonparametric Bayesian framework for calculating the existing probability of liver or vessel.
Finally, the existing probability of tumor can be deduced from that of liver or vessel.
The advantages of our proposed strategy mainly include three aspects: (1) it only needs to construct the prototypes of common tissue such as liver or vessel region, which are easily obtained in any liver volume; (2) it proposes an adaptive non-parametric framework for tumor enhancement, which does not need to learn a common classification model for all liver volumes; (3) dispensable to remove the other different structure such as vessel in liver volume as a pre-processing step.
Experiments validate that the proposed Bayesian-based saliency model for liver tumor enhancement can perform much better than the conventional approaches such as EM, EM/MPM tumor segmentation methods.
Related Results
Depth-aware salient object segmentation
Depth-aware salient object segmentation
Object segmentation is an important task which is widely employed in many computer vision applications such as object detection, tracking, recognition, and ret...
[RETRACTED] Rhino XL Male Enhancement v1
[RETRACTED] Rhino XL Male Enhancement v1
[RETRACTED]Rhino XL Reviews, NY USA: Studies show that testosterone levels in males decrease constantly with growing age. There are also many other problems that males face due ...
Neural Correlates of High-Level Visual Saliency Models
Neural Correlates of High-Level Visual Saliency Models
AbstractVisual saliency highlights regions in a scene that are most relevant to an observer. The process by which a saliency map is formed has been a crucial subject of investigati...
Sample-efficient Optimization Using Neural Networks
Sample-efficient Optimization Using Neural Networks
<p>The solution to many science and engineering problems includes identifying the minimum or maximum of an unknown continuous function whose evaluation inflicts non-negligibl...
A Dynamic Bottom-Up Saliency Detection Method for Still Images
A Dynamic Bottom-Up Saliency Detection Method for Still Images
AbstractIntroductionExisting saliency detection algorithms in the literature have ignored the importance of time. They create a static saliency map for the whole recording time. Ho...
Figs S1-S9
Figs S1-S9
Fig. S1. Consensus phylogram (50 % majority rule) resulting from a Bayesian analysis of the ITS sequence alignment of sequences generated in this study and reference sequences from...
Review of Visual Saliency Prediction: Development Process from Neurobiological Basis to Deep Models
Review of Visual Saliency Prediction: Development Process from Neurobiological Basis to Deep Models
The human attention mechanism can be understood and simulated by closely associating the saliency prediction task to neuroscience and psychology. Furthermore, saliency prediction i...
Renal Ewing Sarcoma: A Case Report and Literature Review
Renal Ewing Sarcoma: A Case Report and Literature Review
Abstract
Introduction
Primary renal Ewing sarcoma is an extremely rare and aggressive tumor, representing less than 1% of all renal tumors. This case report contributes valuable in...

