Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Gas Separation by Using Spiral Wound Membrane

View through CrossRef
Spiral wound membrane is used in several industrial purification processes such as desalination, food industries and gas separation. It has been shown that membrane performance could be greatly enhanced by momentum mixing in the feed channel induced by spacers. Square shaped spacers will be considered in inline geometries for the Reynolds number, Re, of 300 and 500. A separation of CO2 from CH4 will be investigated. A computational fluid dynamics simulation will be conducted for flows of a binary mixture of CO2 and CH4. The mass flux through the membrane will be determined based on the local partial pressures of each species, the permeability, and the selectivity of the membrane. Shear Stress Transport turbulence model will be employed to capture the steady state velocity and concentration field. The transient effect on the momentum mixing will be studied using lattice Boltzmann method. Two dimensional nine velocity directional, D2Q9, lattice arrangement with multi-relaxation time (MRT) lattice Boltzmann method is used to simulate transient flow field while single relaxation time (SRT) lattice Boltzmann method is employed to simulate concentration field for Re = 100 and 300. The bounding surfaces are treated as impermeable walls for simulations conducted using the lattice Boltzmann method. The results predicted by lattice Boltzmann and SST turbulence model agree well.
Title: Gas Separation by Using Spiral Wound Membrane
Description:
Spiral wound membrane is used in several industrial purification processes such as desalination, food industries and gas separation.
It has been shown that membrane performance could be greatly enhanced by momentum mixing in the feed channel induced by spacers.
Square shaped spacers will be considered in inline geometries for the Reynolds number, Re, of 300 and 500.
A separation of CO2 from CH4 will be investigated.
A computational fluid dynamics simulation will be conducted for flows of a binary mixture of CO2 and CH4.
The mass flux through the membrane will be determined based on the local partial pressures of each species, the permeability, and the selectivity of the membrane.
Shear Stress Transport turbulence model will be employed to capture the steady state velocity and concentration field.
The transient effect on the momentum mixing will be studied using lattice Boltzmann method.
Two dimensional nine velocity directional, D2Q9, lattice arrangement with multi-relaxation time (MRT) lattice Boltzmann method is used to simulate transient flow field while single relaxation time (SRT) lattice Boltzmann method is employed to simulate concentration field for Re = 100 and 300.
The bounding surfaces are treated as impermeable walls for simulations conducted using the lattice Boltzmann method.
The results predicted by lattice Boltzmann and SST turbulence model agree well.

Related Results

Procedure for Western blot v1
Procedure for Western blot v1
Goal: This document has the objective of standardizing the protocol for Western blot. This technique allows the detection of specific proteins separated on polyacrylamide gel and t...
Advancements in CO2 Membrane Separation Technologies: Reducing Emissions and Enabling CCS
Advancements in CO2 Membrane Separation Technologies: Reducing Emissions and Enabling CCS
Abstract To overcome production restraints caused by CO2 and H2S in mature basins, operators require more cost-effective gas treatment to effectively remove these im...
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Extended abstract Tight sands gas, coalbed methane and shale gas are three kinds of typical unconventional natural gas. With the decrease of conventional oil and gas...
Critical Gas Saturation During Depressurisation and its Importance in the Brent Field
Critical Gas Saturation During Depressurisation and its Importance in the Brent Field
Critical Gas Saturation During Depressurisation and its Importance in the Brent Field. Abstract After some 20 years of pressure ...
CHANGES IN THE INTENSITY OF UTERINE CIRCULATION IN PREGNANT WOMEN WITH A HISTORY OF CHRONIC ENDOMETRITIS
CHANGES IN THE INTENSITY OF UTERINE CIRCULATION IN PREGNANT WOMEN WITH A HISTORY OF CHRONIC ENDOMETRITIS
Introduction. An essential prerequisite for the normal course of pregnancy is a complete gestational remodeling of the blood circulation, when the spiral arteries are transformed i...
Unconventional Reservoirs: Basic Petrophysical Concepts for Shale Gas
Unconventional Reservoirs: Basic Petrophysical Concepts for Shale Gas
Abstract Unconventional reservoirs have burst with considerable force in oil and gas production worldwide. Shale Gas is one of them, with intense activity taking pla...
Design and development of new spiral head projectiles undergoing ballistics impact
Design and development of new spiral head projectiles undergoing ballistics impact
PurposeThe purpose of this study is to design and develop new spiral head projectiles undergoing ballistics impact.Design/methodology/approachThe introduction of the rifled barrel ...
Proton Polymer Electrolytes in Fuel Cell
Proton Polymer Electrolytes in Fuel Cell
The electrolyte is one of the main parts of a fuel cell. That is divided into liquid and solid and it is used in both Alkaline and acidulous PH. But with due to kind of electrolyte...

Back to Top