Javascript must be enabled to continue!
Temporal changes in Hec1 phosphorylation control kinetochore–microtubule attachment stability during mitosis
View through CrossRef
Precise control of the attachment strength between kinetochores and spindle microtubules is essential to preserve genomic stability. Aurora B kinase has been implicated in regulating the stability of kinetochore–microtubule attachments but its relevant kinetochore targets in cells remain unclear. Here, we identify multiple serine residues within the N-terminus of the kinetochore protein Hec1 that are phosphorylated in an Aurora-B-kinase-dependent manner during mitosis. On all identified target sites, Hec1 phosphorylation at kinetochores is high in early mitosis and decreases significantly as chromosomes bi-orient. Furthermore, once dephosphorylated, Hec1 is not highly rephosphorylated in response to loss of kinetochore–microtubule attachment or tension. We find that a subpopulation of Aurora B kinase remains localized at the outer kinetochore even upon Hec1 dephosphorylation, suggesting that Hec1 phosphorylation by Aurora B might not be regulated wholly by spatial positioning of the kinase. Our results define a role for Hec1 phosphorylation in kinetochore–microtubule destabilization and error correction in early mitosis and for Hec1 dephosphorylation in maintaining stable attachments in late mitosis.
The Company of Biologists
Title: Temporal changes in Hec1 phosphorylation control kinetochore–microtubule attachment stability during mitosis
Description:
Precise control of the attachment strength between kinetochores and spindle microtubules is essential to preserve genomic stability.
Aurora B kinase has been implicated in regulating the stability of kinetochore–microtubule attachments but its relevant kinetochore targets in cells remain unclear.
Here, we identify multiple serine residues within the N-terminus of the kinetochore protein Hec1 that are phosphorylated in an Aurora-B-kinase-dependent manner during mitosis.
On all identified target sites, Hec1 phosphorylation at kinetochores is high in early mitosis and decreases significantly as chromosomes bi-orient.
Furthermore, once dephosphorylated, Hec1 is not highly rephosphorylated in response to loss of kinetochore–microtubule attachment or tension.
We find that a subpopulation of Aurora B kinase remains localized at the outer kinetochore even upon Hec1 dephosphorylation, suggesting that Hec1 phosphorylation by Aurora B might not be regulated wholly by spatial positioning of the kinase.
Our results define a role for Hec1 phosphorylation in kinetochore–microtubule destabilization and error correction in early mitosis and for Hec1 dephosphorylation in maintaining stable attachments in late mitosis.
Related Results
Coordination of NDC80 and Ska complexes at the kinetochore-microtubule interface in human cells
Coordination of NDC80 and Ska complexes at the kinetochore-microtubule interface in human cells
AbstractThe conserved kinetochore-associated NDC80 complex (comprised of Hec1/Ndc80, Nuf2, Spc24, and Spc25) has well-documented roles in mitosis including (1) connecting mitotic c...
Chromosome biorientation requires Aurora B’s spatial separation from its outer kinetochore substrates but not its turnover at kinetochores
Chromosome biorientation requires Aurora B’s spatial separation from its outer kinetochore substrates but not its turnover at kinetochores
SummaryFor correct chromosome segregation in mitosis, sister kinetochores must interact with microtubules from opposite spindle poles (biorientation). For this, aberrant kinetochor...
Evidence that kinetochore microtubules in crane-fly spermatocytes disassemble during anaphase primarily at the poleward end
Evidence that kinetochore microtubules in crane-fly spermatocytes disassemble during anaphase primarily at the poleward end
ABSTRACT
Anaphase chromosome motion involves the disassembly of kinetochore microtubules. We wished to determine the site of kinetochore microtubule disassembly duri...
Modulation of kinesin’s load-bearing capacity by force geometry and the microtubule track
Modulation of kinesin’s load-bearing capacity by force geometry and the microtubule track
AbstractKinesin motors and their associated microtubule tracks are essential for long-distance transport of cellular cargos. Intracellular activity and proper recruitment of kinesi...
Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles
Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles
In mitosis, kinetochores are initially captured by the lateral sides of single microtubules and are subsequently transported toward spindle poles. Mechanisms for kinetochore transp...
KNL1 facilitates phosphorylation of outer kinetochore proteins by promoting Aurora B kinase activity
KNL1 facilitates phosphorylation of outer kinetochore proteins by promoting Aurora B kinase activity
Aurora B kinase phosphorylates kinetochore proteins during early mitosis, increasing kinetochore–microtubule (MT) turnover and preventing premature stabilization of kinetochore–MT ...
Aurora B kinase is recruited to multiple discrete kinetochore and centromere regions in human cells
Aurora B kinase is recruited to multiple discrete kinetochore and centromere regions in human cells
Aurora B kinase has a critical role in regulating attachments between kinetochores and spindle microtubules during mitosis. Early in mitosis, kinase activity at kinetochores is hig...
Molecular basis of outer kinetochore assembly on CENP-T
Molecular basis of outer kinetochore assembly on CENP-T
Stable kinetochore-microtubule attachment is essential for cell division. It requires recruitment of outer kinetochore microtubule binders by centromere proteins C and T (CENP-C an...

